Supporting Information

Neutral inorganic salt additives universally regulate multicolor perovskite for efficient electroluminescence

Jiahao Tang^{a,#}, Qunqing Lin^{b,#}, Yashuang Guo^{a,#}, Zailan Zhang^{c,*}, Xinyi Lv^a, Kun Zhang^a, Binbin Fan^a, Maria A. Sandzhieva^d, Sergey V. Makarov^d, Zhesheng Chen^a, Hengyang Xiang^{a,*}, Haibo Zeng^{a,*}

^aMIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
^bSchool of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
^cSchool of Physics, Nanjing University of Science and Technology, Nanjing 210094, China
^dITMO University, School of Physics and Engineering, St. Petersburg, 197101, Russia

[#]These authors contribute equally to this work.

*Corresponding authors. E-mail addresses: <u>zhangzailan@njust.edu.cn;</u> <u>xiang.hengyang@njust.edu.cn;</u> <u>zeng.haibo@njust.edu.cn</u>

Figure S1. The films' atomic force microscopy (AFM) images by different NaPF₆ doping concentrations (2.5%, 5%, 10%)

From the SEM images of perovskite films at different NaPF₆ doping concentrations, the surface roughness of the pristine film are many gaps and voids. After the addition of NaPF₆, the perovskite film became denser (2.5% and 5% NaPF₆ doping). At the same time, under high concentrations of NaPF₆ doping (10%), it can be observed that the film begins to become uneven. The deterioration of the morphology at high doping concentration can due to the appearance of perovskite agglomerates.

Figure S2. The SEM images of perovskite films at different NaPF₆ doping concentrations (pristine, 2.5%, 5%, 10%)

Figure S3. The X-ray diffraction (XRD) patterns with different NaPF₆ doping

Figure S4. The unnormalized PL spectra under different NaPF₆ doping

Figure S5. (a) The PL Decay of sky blue (490 nm) perovskite films, (b) The PL Decay of pure blue (474 nm) perovskite films

Figure S6. (a) The sky blue PL spectra with different NaPF₆ doping, (b) The pure blue PL spectra with different NaPF₆ doping

Figure S7. The sky blue films' PL mapping and their lifetime statistics

Figure S8. The pure blue films' PL mapping and their lifetime statistics

Figure S9. (a) Current density-voltage (J-V) curves, (b) Luminance- voltage (L-V) curves, (c) EQE-luminance (EQE-L) curves of green PeLEDs at different NaPF₆ doping

Figure S10. The device lifetime (T₅₀, initial luminance of 1000 cd/m²) of pristine and NaPF₆-treated device (a) package, (b) unpackaged

Figure S11. (a) Current density-voltage (J-V) curves, (b) Luminance- voltage (L-V) curves, (c) EQE-luminance (EQE-L) curves of sky blue PeLEDs at different NaPF₆ doping. (d) Current density-voltage (J-V) curves, (e) Luminance- voltage (L-V) curves, (f) EQE-luminance (EQE-L) curves of pure blue PeLEDs at different NaPF₆ doping.

Sample	τ_1 (ns)	τ_2 (ns)	$\tau_{\text{average}} (\text{ns})$
Pristine	4.36	35.71	22.26
2.5 %-NaPF ₆	9.74	73.27	50.09
5 %-NaPF ₆	11.47	75.58	51.13
10 %-NaPF ₆	18.58	140.36	114.49

Table S1 TRPL data of green perovskite films at different NaPF₆ doping concentrations

Table S2 TRPL data of sky blue perovskite films at different $NaPF_6$ doping concentrations

Sample	τ_1 (ns)	τ_2 (ns)	$\tau_{\text{average}}\left(ns\right)$
Pristine	6.64	39.62	22.05
1.25 %-NaPF ₆	5.83	38.36	20.72
2.5 %-NaPF ₆	7.57	44.26	28.44
5 %-NaPF ₆	8.64	49.60	32.26

Table S3 TRPL data of pure blue perovskite films at different $NaPF_6$ doping concentrations

Sample	τ_1 (ns)	τ_2 (ns)	$\tau_{average} (ns)$
Pristine	9.56	51.30	36.67
2.5 %-NaPF ₆	9.66	58.67	39.10
5 %-NaPF ₆	10.13	70.40	47.69
10 %-NaPF ₆	10.91	91.65	64.09