Engineering Biocompatible Hydrogen Titanate Nanocarriers with Blood Brain Barrier (BBB) Crossing Potential for Doxorubicin Delivery to Glioma Cells

Samraggi Choudhury^{1, #,} Ghrutanjali Sahu,^{2,3, #} Pankaj Kharra,¹ Himanshu Sekhar Panda¹, Laxmidhar Besra,² Sriparna Chatterjee^{2, *} Jiban Jyoti Panda^{1, **}

¹Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar-751013, Odisha, India

²Academic of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

³ Institute of Nano Science and Technology, Mohali-140306, Punjab, India

#Equal contribution

*Corresponding author: sriparna@immt.res.in

**Corresponding author: jyoti@inst.sc.in

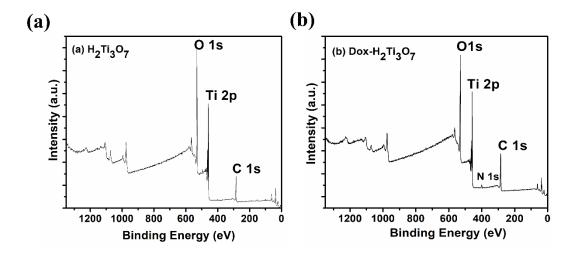


Figure S1: XPS survey spectra of (a) H₂Ti₃O₇ and (b) Dox-H₂Ti₃O₇. The spectra show characteristic peaks corresponding to O 1s, Ti 2p, and C 1s. In the Dox-loaded sample (b), an additional N 1s peak is observed, indicating the presence of doxorubicin.

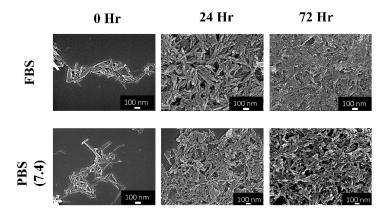


Figure S2: FESEM images illustrating the stability of Dox-H₂Ti₃O₇ nanotubes in FBS and PBS (pH 7.4) over time. Images show slight aggregation in FBS compared to PBS after 72 hours of interaction. (Scale bars = 100 nm)

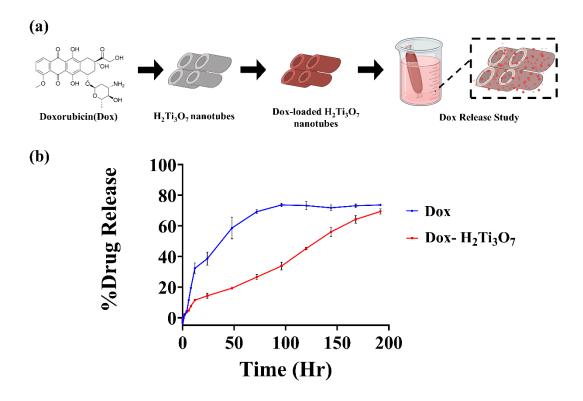


Figure S3: (a) The process of Dox loading and release from H₂Ti₃O₇ nanotubes. (b) Graph showing the percentage of drug release from these nanotubes after 192 hours (8 days). (Schematic representation created using <u>Biorender.com</u>).

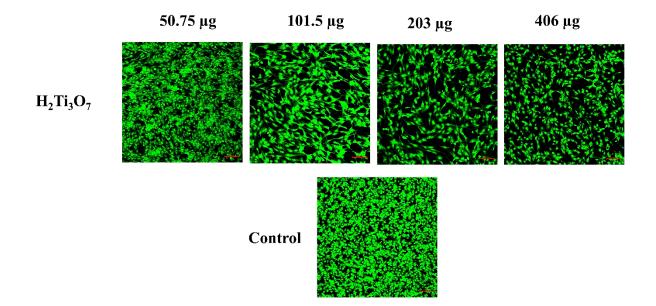


Figure S4: Calcein AM staining of C6 cells exposed to H₂Ti₃O₇ nanotubes of equivalent concentration present in Dox-H₂Ti₃O₇ nanotubes. (Scalebar:100µm).

Table 1: A comparative table highlighting the pros and cons of H₂Ti₃O₇ nanotubes as carrier relative to other commonly used nanocarriers in glioma and cancer therapy.

Nano Carriers	Carrier's Pros	Carrier's Cons	References
Carbon nanotubes	-Efficient Drug	-Toxicity Risks:	1
(CNTs)	Transport: CNTs	Associated with the	
	offer a high capacity	generation of	2
	for loading	reactive oxygen	3
	therapeutic agents,	species (ROS) and	
	allowing for	potential	
	effective drug	neuroinflammation.	
	delivery.		
		- Biodegradation	

	- Enhanced BBB	Issues: Lack of	
	Crossing: CNTs can	biodegradability,	
	achieve unique	which complicates	
	penetration across	their breakdown in	
	the blood-brain	biological systems.	
	barrier (BBB)		
	through surface	- Environmental	
	modifications	Challenges:	
	facilitating targeted	Difficulties in safe	
	delivery to the brain.	environmental	
		disposal due to their	
	-Immunomodulatory	persistence and	
	Effects: CNTs have	potential ecological	
	the potential to	impact.	
	modulate immune		
	responses, such as		
	delivering CpG		
	oligonucleotides,		
	which can stimulate		
	immune activity		
	against tumors.		
Lipid nanoparticles	- Effective BBB	- Restricted Drug	4
	Penetration: HFn	Capacity: Lipid	5
	liposomes, which	nanoparticles have a	
	efficiently cross the	limited ability to	6
	blood-brain barrier.	carry therapeutic	
	- Minimal	agents, which can	
	Immunogenicity:	limit their	
	These nanoparticles	effectiveness in	
	tend to elicit a low	delivering high	
	immune response,	doses of drugs.	
	reducing the risk of	- Storage Stability	
		Concerns: These	

	adverse reactions.	nanoparticles can be	
		prone to degradation	
	- Scalable	or structural changes	
	Manufacturing:	during storage,	
	Production can be	affecting their	
	easily scaled up,	performance over	
	making them	time.	
	suitable for large-		
	scale applications.	- Dependence on	
		Passive Targeting:	
		Lipid nanoparticles	
		primarily rely on the	
		Enhanced	
		Permeability and	
		Retention (EPR)	
		effect for targeting	
		tumors, which can	
		be less precise and	
		consistent than	
		active targeting	
		strategies.	
Polymeric	- Adjustable	- Solubility Issues:	7
nanocarriers	Biodegradation:	Chitosan, for	8
	Materials like	example, exhibits	0
	chitosan and PLGA	limited solubility in	9
	can be tailored to	water, which can	
	degrade at specific	complicate	
	rates, allowing for	formulation and	
	controlled release	delivery.	
	profiles.	Three to a second	
	Destroy Directory	- Thrombogenic	
	- Responsive Drug	Potential: There is a	
	Release: These	risk of inducing	
	polymers can be	blood clots, which	

	engineered to release	could lead to	
	drugs in response to	thrombosis.	
	environmental cues		
	such as pH changes	- Reproducibility	
	or temperature	Challenges: The	
	variations.	production process	
		can result in	
	- Easy Surface	inconsistent quality	
	Modification: The	between batches,	
	surfaces of these	affecting reliability	
	polymers can be	and efficacy.	
	easily modified with		
	targeting ligands or		
	other functional		
	groups, enhancing		
	their ability to		
	interact with specific		
	cells or tissues.		
	- Excellent	- Limited in vivo	10
	Biocompatibility and	distribution data:	11
	Stability: These	There is currently a	11
	nanotubes exhibit	lack of	
	high compatibility in	comprehensive data	
	biological systems	on how these	
H2Ti3O7 nanotubes	and maintain	nanotubes distribute	
	structural integrity	within living	
	over time.	organisms.	
		- Surface	
	- pH-Responsive	modifications	
	Drug Release: They		
	can release drugs in	needed for active	
	response to changes	targeting: To	
	_		

targeting acidic	certain cells or	
tumor environments.	tissues, these	
	nanotubes require	
- Intrinsic BBB	additional surface	
Permeability: These	modifications.	
nanotubes can cross		
the blood-brain		
barrier, highlighting		
their inherent ability		
to deliver		
therapeutic agents to		
the brain.		
- Minimal		
Cytotoxicity: They		
exhibit low toxicity		
to normal cells,		
ensuring safety in		
therapeutic		
applications.		

References:

- Y. You, N. Wang, L. He, C. Shi, D. Zhang, Y. Liu, L. Luo and T. Chen, *Dalt. Trans.*, 2019, 48(5), 1569-1573.
- 2 M. Caffo, A. Curcio, K. Rajiv, G. Caruso, M. Venza and A. Germanò, *Cancers*, 2023,15(9), 2575.
- S. K. S. Kushwaha, S. Ghoshal, A. K. Rai and S. Singh, *Brazilian J. Pharm. Sci.*, 2013, 49, 629-643.
- 4 M. Ghaferi, A. Raza, M. Koohi, W. Zahra, A. Akbarzadeh, H. Ebrahimi Shahmabadi and S. E. Alavi, *Pharmaceutics*, 2022, **14(10)**, 2183.

- 5 N. Kaur, P. Gautam, D. Nanda, A. S. Meena, A. Shanavas and R. Prasad, *Bioconjug. Chem.*, 2024, **35(9)**, 1283-1299.
- 6 T. Waghule, K. Laxmi Swetha, A. Roy, R. Narayan Saha and G. Singhvi, *Eur. J. Pharm. Biopharm.*, 2023, **186**, 18-29.
- 7 S. Liu, B. Tan, F. Wang and Y. Yu, *Front. Pharmacol.*, 2024, 15.
- 8 N. Avramović, B. Mandić, A. Savić-Radojević and T. Simić, *Pharmaceutics*, 2020, 12.
- 9 M. Alsehli, *Saudi Pharm. J.*, 2020, 28.
- M. Ray, S. Chatterjee, T. Das, S. Bhattacharyya, P. Ayyub and S. Mazumdar, Nanotechnology, 2011, 22.
- M. I. Al-Shemri, M. Aliannezhadi, R. A. Ghaleb and M. J. Al-Awady, *Sci. Rep.*, 2024, 14(1), 25998.