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Figure S1: XPS survey spectra of (a) H:TisO- and (b) Dox-H:Ti;O-. The spectra show
characteristic peaks corresponding to O 1s, Ti 2p, and C 1s. In the Dox-loaded sample

(b), an additional N 1s peak is observed, indicating the presence of doxorubicin.
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Figure S2: FESEM images illustrating the stability of Dox-H:Ti;O- nanotubes in FBS and
PBS (pH 7.4) over time. Images show slight aggregation in FBS compared to PBS after 72

hours of interaction. (Scale bars = 100 nm)
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Figure S3: (a) The process of Dox loading and release from H,Ti;O; nanotubes. (b) Graph
showing the percentage of drug release from these nanotubes after 192 hours (8 days).

(Schematic representation created using Biorender.com).
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Figure S4: Calcein AM staining of C6 cells exposed to H,Ti;O, nanotubes of equivalent

concentration present in Dox-H:Ti:O- nanotubes. (Scalebar:100pm).

Table 1: A comparative table highlighting the pros and cons of H.Ti:O- nanotubes as

carrier relative to other commonly used nanocarriers in glioma and cancer therapy.

Nano Carriers Carrier’s Pros Carrier’s Cons | References
Carbon nanotubes | -Efficient Drug -Toxicity Risks: !
(CNTs) Transport: CNTs Associated with the

offer a high capacity | generation of

for loading reactive oxygen 3
therapeutic agents, species (ROS) and
allowing for potential

effective drug neuroinflammation.

delivery.

- Biodegradation




- Enhanced BBB
Crossing: CNTs can
achieve unique
penetration across
the blood-brain
barrier (BBB)
through surface
modifications
facilitating targeted
delivery to the brain.

-Immunomodulatory
Effects: CNTs have
the potential to
modulate immune
responses, such as
delivering CpG
oligonucleotides,
which can stimulate
immune activity

against tumors.

Issues: Lack of
biodegradability,
which complicates
their breakdown in

biological systems.

- Environmental
Challenges:
Difficulties in safe
environmental
disposal due to their
persistence and
potential ecological

impact.

Lipid nanoparticles

- Effective BBB
Penetration: HFn
liposomes, which
efficiently cross the

blood-brain barrier.

- Minimal
Immunogenicity:
These nanoparticles
tend to elicit a low
immune response,

reducing the risk of

- Restricted Drug
Capacity: Lipid
nanoparticles have a
limited ability to
carry therapeutic
agents, which can
limit their
effectiveness in
delivering high

doses of drugs.

- Storage Stability

Concerns: These




adverse reactions.

- Scalable
Manufacturing:
Production can be
easily scaled up,
making them
suitable for large-

scale applications.

nanoparticles can be
prone to degradation
or structural changes
during storage,
affecting their
performance over

time.

- Dependence on
Passive Targeting:
Lipid nanoparticles
primarily rely on the
Enhanced
Permeability and
Retention (EPR)
effect for targeting
tumors, which can
be less precise and
consistent than
active targeting

strategies.

Polymeric

nanocarriers

- Adjustable
Biodegradation:
Materials like
chitosan and PLGA
can be tailored to
degrade at specific
rates, allowing for
controlled release

profiles.

- Responsive Drug
Release: These

polymers can be

- Solubility Issues:
Chitosan, for
example, exhibits
limited solubility in
water, which can
complicate
formulation and

delivery.

- Thrombogenic
Potential: There is a
risk of inducing

blood clots, which




engineered to release
drugs in response to
environmental cues
such as pH changes
or temperature

variations.

- Easy Surface
Modification: The
surfaces of these
polymers can be
easily modified with
targeting ligands or
other functional
groups, enhancing
their ability to
interact with specific

cells or tissues.

could lead to

thrombosis.

- Reproducibility
Challenges: The
production process
can result in
inconsistent quality
between batches,
affecting reliability
and efficacy.

H:Ti;O7 nanotubes

- Excellent
Biocompatibility and
Stability: These
nanotubes exhibit
high compatibility in
biological systems
and maintain
structural integrity

over time.

- pH-Responsive

Drug Release: They
can release drugs in
response to changes
in pH levels, which

is beneficial for

- Limited in vivo
distribution data:
There is currently a
lack of
comprehensive data
on how these
nanotubes distribute
within living

organisms.

- Surface
modifications
needed for active
targeting: To
enhance their ability

to specifically target




targeting acidic certain cells or
tumor environments. | tissues, these
nanotubes require

- Intrinsic BBB additional surface

Permeability: These modifications.
nanotubes can cross
the blood-brain
barrier, highlighting
their inherent ability
to deliver
therapeutic agents to

the brain.

- Minimal
Cytotoxicity: They
exhibit low toxicity
to normal cells,
ensuring safety in
therapeutic

applications.
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