Electronic Supplementary Information (ESI) for

Efficient Synthesis of Au₃₆(SR)₂₄ Nanoclusters via Cluster-From-Cluster Approach

Yan-Yan Lin,^b Zi-Ang Nan,^a Zhen Lei ^{*ab} and Quan-Ming Wang^{*a}

^aDepartment of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 10084, P. R. China

^bFujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry,

Fuzhou University, Fuzhou 350108, P. R. China

*E-mail: qmwang@tsinghua.edu.cn (Q.-M. W.)

*E-mail: zhenlei@fzu.edu.cn (Z. L.)

Table of Contents

I. Materials and reagents

II. Physical Measurements and instrumentation

III. Synthesis and crystallization details

IV. X-ray crystallography

V. Reference

VI. Supporting Figures

Figure S1. MALDI-TOF MS spectrum of as-synthesized Au₃₆(S-C₆H₄-4-MeO)₂₄ (**2**) Figure S2. MALDI-TOF MS spectrum of as-synthesized Au₃₆(S-C₆H₄-4-lBu)₂₄ (**3**) Figure S3. MALDI-TOF MS spectrum of as-synthesized Au₃₆(S-C₆H₄-4-Cl)₁₈ (**4**) Figure S4. MALDI-TOF MS spectrum of as-synthesized Au₃₆(S-C₆H₄-4-F)₁₈ (**5**) Figure S5. MALDI-TOF MS spectrum of as-synthesized Au₃₆(SPh)₂₄ (**6**) Figure S6. MALDI-TOF MS spectrum of as-synthesized Au₃₆(S-C₆H₄-3-Me)₂₄ (**7**) Figure S7. MALDI-TOF MS spectrum of as-synthesized Au₃₆(S-C₆H₃-3,4-DiMe)₁₈ (**8**) Figure S8. MALDI-TOF MS spectrum of as-synthesized Au₃₆(S-C₆H₃-3,5-DiMe)₁₄ (**9**) Figure S9. MALDI-TOF MS spectrum of as-synthesized Au₃₆(S-C₆H₃-3,5-DiMe)₂₄ (**9**) Figure S10. H- π interactions between thiolates of different Au₂(SR)₃ staple motifs in [Au₂₅(S-C₆H₄-3-Cl)]⁻

I. Materials and reagents

All of the reagents and solvents employed were commercially available and used as received. HAuCl₄·4H₂O, dimethylsulfide and P(CH₂CH₂COOH)₃·HCl were bought from Shanghai Tuosi Chemicals, TCI and Shanghai Boka Chemicals, respectively. Thiolates were obtained from J&K Chemicals, TCI, Ark Pharm, Inc. and Shanghai Boka Chemicals, respectively. NaBH₄ was purchased from Energy Chemicals.

II. Physical Measurements and instrumentation

UV-Vis spectra were recorded on a Hitachi U-3900 UV-Vis spectrophotometer. MALDI-TOF MS spectra were measured on a Shimadzu AXIMA Performance mass spectrometer.

III. Synthesis and crystallization details

Au₁₃ was prepared according to our previous procedures.¹

Au₃₆ nanoclusters were prepared via a similar route to that of Au₂₅ nanoclusters.¹ Me₂SAuCl (0.2 mmol, 59.0 mg) was dissolved in CH₂Cl₂ (10 mL) and MeOH (10 mL), which was followed by sequential addition of thiols (0.2 mmol; 4-Me-C₆H₄-SH for 1, 4-MeO-C₆H₄-SH for 2, 4-^tBu-C₆H₄-SH for 3, 4-Cl-C₆H₄-SH for 4, 4-F-C₆H₄-SH for 5, PhSNa for 6, 3-Me-C₆H₄-SH for 7, 3,4-DiMe-C₆H₃-SH for 8, 3,5-DiMe-C₆H₃-SH for 9, and 2-NAP-SH for 10) and Et₃N (0.2 mmol, 28.0 μ L). Then the suspension was stirred for about 5 min, filtered, and washed with MeOH (5 mL). Mix the (AuSR)_x with Au₁₃ (7.7×10^{-3} mmol, 39.0 mg) in CH₂Cl₂ (10 mL) and MeOH (10 mL), and a 1 mL ethanol solution of NaBH₄ (5.3×10^{-2} mmol, 2.0 mg) was dropwise added. After it was allowed to stir overnight with exclusive of light, the solution was evaporated to dryness. The solid was washed with water (5 mL \times 3) and subsequently a mixture of ether/hexane (1:1, v:v; 5 mL \times 3) again. After dried in vacuum overnight at room temperature, Au₃₆ were obtained as dark solids. Crystalizations were performed by layering a ether/hexane (1:1, v:v) mixture onto filtered dichloromethane/toluene/ethanol (3:1:1, v:v:v) solutions of as-synthesized products in tubes at 4°C. Black block-like crystals of 1, 2, 4, and 7-10 suitable for X-ray diffraction analysis can be obtained after two to three weeks, respectively. Yields: 52.2 mg (62%, based on gold) for 1, 51.9 mg (60%) for 2, 33.0 mg (36%) for 3, 35.6 mg (41%) for 4, 28.9 mg (34%) for 5, 43.2 mg (53%) for 6, 53.0 mg (64%) for 7, 45.9 mg (53%) for 8, 48.0 mg (55%) for 9, and 57.9 mg (64%) for **10**.

IV. X-ray crystallography

Intensity data were collected on a Rigaku (Agilent) SuperNova Dual system. Cu K α ($\lambda = 0.1.54184$ Å) micro-focus X-ray source was used for compounds 1, 2, 4, and 7-10 at 173 K. Absorption

corrections were applied by using the program CrysAlisPro (multi-scan). The structures were solved by direct methods, and non-hydrogen atoms were refined anisotropically by least-squares on F^2 using the SHELXTL program. The hydrogen atoms of organic ligands were generated geometrically; hydrogen atoms of some thiolate ligands in 2, 7, 8 and 10 were not added, due to disorder. SQUEEZE tool of PLATON was applied in all the structures, due to large solvent voids. One of the 2-thionaphtholate ligand in 10 (containing two independent Au₃₆ molecules) was not identified, due to weak diffraction.

V. Reference

(1) Z. Lei, J.-J. Li, Z.-A. Nan, Z.-G. Jiang, Q.-M. Wang, Angew. Chem. Int. Ed. 2021, 60, 14415–14419.

VI. Supporting Figures

Figure S1. MALDI-TOF MS spectrum of as-synthesized Au₃₆(S-C₆H₄-4-MeO)₂₄ (2). The asterisk indicates fragment [Au₃₆(SR)₂₁-2H]⁺.

Figure S2. MALDI-TOF MS spectrum of as-synthesized Au₃₆(S-C₆H₄-4-^tBu)₂₄ (3). The asterisks indicate fragments [Au₃₅(SR)₂₄+2H]⁺, [Au₃₄(SR)₂₃+2H]⁺ and [Au₃₃(SR)₂₂+2H]⁺.

Figure S3. MALDI-TOF MS spectrum of as-synthesized Au₃₆(S-C₆H₄-4-Cl)₁₈ (4).

Figure S4. MALDI-TOF MS spectrum of as-synthesized Au₃₆(S-C₆H₄-4-F)₁₈ (5). The asterisks indicate fragments $[Au_{33}(SR)_{24}+4H]^+$, $[Au_{32}(SR)_{23}+4H]^+$, $[Au_{31}(SR)_{22}+4H]^+$ and $[Au_{30}(SR)_{21}+4H]^+$.

Figure S5. MALDI-TOF MS spectrum of as-synthesized Au₃₆(SPh)₂₄ (6).

Figure S6. MALDI-TOF MS spectrum of as-synthesized Au₃₆(S-C₆H₄-3-Me)₂₄ (7).

Figure S7. MALDI-TOF MS spectrum of as-synthesized Au₃₆(S-C₆H₃-3,4-DiMe)₂₄ (8). The asterisks indicate fragments $[Au_{30}(SR)_{22}+5H]^+$, $[Au_{29}(SR)_{21}+5H]^+$, $[Au_{28}(SR)_{20}+5H]^+$ and $[Au_{27}(SR)_{19}+5H]^+$.

Figure S8. MALDI-TOF MS spectrum of as-synthesized Au₃₆(S-C₆H₃-3,5-DiMe)₂₄ (9). The asterisk indicates fragment [Au₃₃(SR)₁₈-2H]⁺.

Figure S9. MALDI-TOF MS spectrum of as-synthesized Au₃₆(S-2-NAP)₂₄ (10). The asterisks indicate fragments [Au₃₁(SR)₂₀+2H]⁺ and [Au₃₀(SR)₁₉+2H]⁺.

Figure S10. H- π interactions between thiolates of different Au₂(SR)₃ staple motifs in [Au₂₅(S-C₆H₄-3-Cl)]⁻.