Supplementary information for

Atomic Doping and Light Irradiation Promote Anodic Hydrogen Evolution through Furfural Oxidation on Cu₂₊₁O/Cu Nano-Dendrites

Yuan Xu^{a,b}, Tao He^b, Yechan Yin^b, Liqiu Zhang^{*b}, Hongxia Shen^b, Bin Li^b,

Lichun Liu^{*a,b}, and Song Bai^{*a}

^a College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang Province, 321000, P. R. China

^b College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute,

Jiaxing University, Jiaxing, Zhejiang Province, 314001, P. R. China

Figures

Figure S1. Optimization of CuSO₄ concentration for optimum furfural oxidation. (a) Linear sweep voltammograms of copper nano-dendrites electrodeposited with different concentrations of CuSO₄.
(b) Enlarged LSV curve in shadow region in (a). (c) Diagram of peak current density of furfural oxidation as a function of CuSO₄ concentration.

Figure S2. Optimization of K_2PdCl_4 concentration. (a) Linear sweep voltammograms of copper nano-dendrites electrodeposited with different concentrations of K_2PdCl_4 with fixed 50 mM CuSO₄. (b) Enlarged LSV curve in the 0-0.5V region in (a). (c) Diagram of peak potential shift of furfural oxidation as a function of K_2PdCl_4 concentration.

Figure S3. Optimization of deposition time. (a) Linear sweep voltammograms of copper nanodendrites electrodeposited at different times using electrolyte solution containing 100 μ M of K₂PdCl₄ with fixed 50 mM of CuSO₄. (b) Enlarged LSV curve in the 0-0.5V region in (a) showing furfural oxidation behavior. (c) Diagram of peak potential of furfural oxidation as a function of K₂PdCl₄ concentration.

Figure S4. SEM image of a typical electrodeposit using the electrodeposition technique.

Figure S5. Energy dispersive spectrum of Pd@Cu₂₊₁O/Cu NDs. Inset: ICP/MS result.

Figure S6. Comparison on current densities of furfural oxidation on $Cu_{2+1}O/Cu$ and Cu_2O . Cu_2O was prepared by 2h electrooxidation by fixing potential at 0.55 V vs RHE in 1 M KOH.

Figure S7. The optical spectra of visible light produced by the light source.

Figure S8. (a) Full spectra of XPS for $Cu_{2+1}O/Cu$ and $Pd@Cu_{2+1}O/Cu$ NDs. (b) XPS spectra of Pd 3d for $Cu_{2+1}O/Cu$ and $Pd@Cu_{2+1}O/Cu$ NDs.

Figure S9. Cyclic voltammograms at different scan rates for $Cu_{2+1}O/Cu$ (a) and Pd@Cu₂₊₁O/Cu NDs (b). Potential range is set by OCP±50 mV.

Figure S10. LSV curves of Cu₂₊₁O/Cu (a) and Pd@Cu₂₊₁O/Cu (c) at different temperatures in 1 M KOH electrolyte containing 50 mM furfural; and their corresponding $\log_{10} j \sim 1000/T$ curves for Cu₂₊₁O/Cu (b), and Pd@Cu₂₊₁O/Cu (d).