Supporting Information

Impact of Free Valence Electrons Contraction on Nanoclusters Optical and Electrocatalytic Properties: based on M_1Ag_{14} (M = Pt/Pd) Series Nanoclusters

Tingting Liu, ^b Yuansheng Li, ^b Yang Zuo, ^b Along Ma, ^a Yifei Wang, ^b Shuo

Zhang, ^b Xiaoshuang Ma, ^b Zhengmao Yin, *^b Junxian Yang*^b and Shuxin

Wang*a

Along Ma, Shuxin Wang* College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. email: <u>shuxin wang@qust.edu.cn</u>

Tingting Liu, Yuansheng Li, Yang Zuo, Shuo Zhang, Yifei Wang, Shuo Zhang, Xiaoshuang Ma, Zhengmao Yin*, Junxian Yang* College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. email: <u>yzm198752@163.com</u>, <u>yangjx@qust.edu.cn</u>

Table of Contents

Section 1. Characterization, Electrochemical measurements and DFT calculations

I. Characterization II. Electrochemical measurements III. DFT calculations

Section 2. Supporting Figures

Scheme S1. Photographs of the synthesis process of the Pt₁Ag₁₄ nanocluster.

Fig. S1 The overall structure of the Pd_1Ag_{14} and Pt_1Ag_{14} nanoclusters.

Fig. S2 SEM image and corresponding elemental mapping images of the Pt₁Ag₁₄ nanocluster.

Fig. S3 XPS spectra of the Pt_1Ag_{14} nanocluster. (a) Pt 4f; (b) Ag 3d.

Fig. S4 Structural comparison and bond length among Pt_1Ag_{14} and Pd_1Ag_{14} nanoclusters.

Fig. S5 A unit cell in the Pt_1Ag_{14} single crystal.

Fig. S6 Packing mode of Pt_1Ag_{14} in the crystal shown.

Fig. S7 Packing mode of Pd₁Ag₁₄ in the crystal shown.

Fig. S8 Characterization of Pd₁Ag₁₄ nanocluster.

Fig. S9 (a) H₂ faradaic efficiency of the Pd_1Ag_{14}/C (black) and Pt_1Ag_{14}/C (red) at different potentials. (b) H₂ partial current density of the Pd_1Ag_{14}/C (black) and Pt_1Ag_{14}/C (red) at different potentials.

Fig. S10 Gas products (CO) analysis for eCO_2RR on Pd_1Ag_{14}/C and Pt_1Ag_{14}/C . Gas chromatography **shows** the gas products of eCO_2RR at -1.3 V_{RHE}

Fig. S11 The ¹H NMR spectra of the catholyte reaction solution for the Pd_1Ag_{14}/C .

Fig. S12 The ¹H NMR spectra of the catholyte reaction solution for the Pt_1Ag_{14}/C .

Fig. S13 Tafel plots constructed for the eCO₂RR on the two catalysts.

Fig. S14 UV-vis absorbance spectra of the three nanoclusters before and after eCO_2RR . (a) Pd_1Ag_{14} and (b) Pt_1Ag_{14} .

Fig. S15 The Electrochemical Impedance Spectroscopy of Pd₁Ag₁₄/C and Pt₁Ag₁₄/C.

Fig. S16 CV curves at various scan rates (from 20 to 100 mV s⁻¹) of (a) Pd_1Ag_{14}/C and (b) Pt_1Ag_{14}/C

Fig. S17 The comparison of electrochemical double layer capacitance over Pd_1Ag_{14}/C (red line) and Pt_1Ag_{14}/C (black line).

Fig. S18 The turnover frequency of C_1 products was obtained from Pd_1Ag_{14}/C and Pt_1Ag_{14}/C .

Section 3. Supporting Table

Table S1. The crystal structure parameters for Pt₁Ag₁₄(PhS)₆((*p*-OMePh)₃P)₇ (Pt₁Ag₁₄).

Table S2. The data of Bader charge analysis for the Pd_1Ag_{14} nanocluster.

Table S3. The data of Bader charge analysis for the Pt_1Ag_{14} nanocluster.

Section 1. Characterization, Electrochemical measurements, and DTF

calculations

I. Characterization

Ultraviolet-visible spectroscopy (UV-Vis): The UV-Vis spectra were acquired using a Shanghai Metash UV-8000 spectrophotometer. All the samples were dissolved in CH_2Cl_2 for the spectral measurements.

X-ray photoelectron spectroscopy (XPS): The XPS measurements were carried out using an ESCALAB XI+ system equipped with a monochromated AlK α (1486.8 eV) 150W X-ray source, a 0.5 mm circular spot, and a flood gun to mitigate charging effects. The base pressure in the analysis chamber was maintained below 1 x 10⁻⁹ mbar, and data were collected with a pass energy of 20 eV. The crystal particles of Pd₁Ag₁₄ and Pt₁Ag₁₄ were adhered to packaging tape for testing, with a small amount of carbon added for data correction.

Scanning electron microscope-energy dispersive spectrometer (SEM-EDS): SEM-EDS analysis was performed using a JSM-6700F instrument. The crystal particles of Pd_1Ag_{14} and Pt_1Ag_{14} were mounted on conductive adhesive, and the measurements were taken with an accelerating voltage ranging from 0.1 to 30 kV.

Thermogravimetric analysis (TGA): TGA was performed using a thermogravimetric analyzer (DTG-60H) with approximately 8 mg of nanoclusters placed in a SiO_2 pan. The analysis was conducted at a heating rate of 20 K/min under a nitrogen atmosphere. Prior to TGA testing, the sample was extracted for 5 hours with a vacuum pump to eliminate solvent molecules.

Nuclear magnetic resonance (NMR): NMR measurements were performed using a Bruker Avance spectrometer operating at 400 MHz for ¹H. For the preparation sample, electrolysis was performed at each potential from -0.9 V (vs. RHE) to -1.7 V (vs. RHE) for 8 minutes. After 400 μ L of the cathode reaction solution and 200 μ L of D₂O (using DMSO as an internal standard) were mixed, ¹H NMR tests were performed directly.

X-ray crystallography:

The data collections for single crystal X-ray diffraction (SC-XRD) were carried out on a Bruker D8 Quest at 170 K, using Mo-K α radiation ($\lambda = 0.71073$ Å). The structure was solved by intrinsic phasing and refined with full-matrix least squares on F² using the SHELXTL software package. All non-hydrogen atoms were refined anisotropically, and all the hydrogen atoms were set in geometrically calculated positions and refined isotopically using a riding model. Detailed crystal data for **Pt₁Ag₁₄** nanocluster is given in Table S1. The CCDC number for **Pt₁Ag₁₄** is 2413566, which includes the supplementary crystallographic data associated with this study. These data are provided free of charge by the Cambridge Crystallographic Data Centre.

II. Electrochemical measurements

To prepare the catalyst sample, the as-prepared two M_1Ag_{14} nanoclusters were loaded on Multiwalled Ketjen Carbon (C) with a mass ratio of 1 (5 mg nanoclusters and 5 mg Ketjen Carbon). The catalyst ink was prepared by dispersing the sample in isopropanol (2.5 mg·mL⁻¹) under sonication for 20 minutes. Then, 1 mL catalyst suspension and 10 µL Nafion (5 wt.%) were uniformly mixed as the final catalyst ink. Subsequently, 40 μ L catalytic ink was dropwise cast onto the carbon cloth (1 × 1 cm²) and dried at room temperature as the working electrode. 0.5 M KHCO₃ solution (pH = 7.2 when saturated with CO₂) was used as the electrolyte.

The electrochemical properties of two catalysts were evaluated on a DONGHUA DH7001B electrochemical workstation. All electrochemical measurements were carried out in a custom gastight H-cell with two compartments separated by Nafion 117 membrane. Each compartment contained 25 mL electrolyte (0.5 M KHCO₃) with approximately 10 mL headspace. Ag/AgCl in 0.5 M KHCO₃ saturated aqueous electrolyte was employed as the reference electrode. Electrode potentials measured on the Ag/AgCl scale ($E_{Ag/AgCl}$) were converted into the reversible hydrogen electrode (RHE) scale using the following equation:

 $E(RHE) = E(Ag/AgCl) + 0.1976 + 0.0592 \times pH$

The output of the gas flow from the cathode chamber passes through a gas flow controller (the gas flow controller was used to control the gas flow rate) and then into a gas chromatograph instrument (GC3900Plus, RUI NENG) for on-line identification and quantification of the gaseous products, which was purged for 30 min with an average rate of 10 mL·min⁻¹ (at room temperature and ambient pressure) prior to the test.

The faradaic efficiency (FE_X) and partial current density (j_X) of X (X=CO or H₂) were calculated as below:

$$FE_X = \frac{\left(N_i \times n \times F\right)}{Q_t}$$

$$j_X = \frac{FE_X \times Q_t}{t \times \text{Area}}$$

Where

 Q_t = total charge consumed in the electrochemical reaction

 N_i = the number of moles of the product (measured GC)

n = the number of electrons transferred in the elementary reaction (n is 2 for CO and H₂)

F = the Faradaic constant (96485 C mol⁻¹)

t = reaction time (s)

Area = geometry area of the electrode (1 cm^2)

An Ag/AgCl electrode containing 3.4 mol·L⁻¹ KCl was used as the reference electrode, a 1×1 cm² platinum plate served as the counter electrode, and a catalyst-coated carbon cloth was employed as the working electrode. The ECSA was determined in a 0.5 M KHCO₃ electrolyte using cyclic voltammetry (CV) curves recorded over a potential range of 0.2 to 0.3 V (vs. RHE) at scan rates ranging from 20 to 100 mV·s⁻¹. All CV curves were obtained during CO₂ electroreduction without IR compensation. The current density showed a linear relationship with the scan rate, and its proportionality constant corresponds to the double-layer capacitance (*C*_{dl}). The ECSA was calculated using the following formula:

$$ECSA = \frac{C_{dl}}{C_s}$$

 C_{dl} = the measured electric double-layer capacitance

 C_s = the specific capacitance of the electrode material.

After the eCO_2RR tests were completed, the samples were rinsed with CH_2Cl_2 and collected for UV-vis characterization.

At each potential, 400 μ L of the electrolyzed catholyte was collected, and 200 μ L of D₂O containing DMSO as an internal standard was added. The product peak area was calculated using MestReNova, and the Faraday efficiency (FE_{formate}) of the liquid product was calculated using the following formula:

$$n_{formate} = \frac{n_{DMSO} \times n_1 \times S_1}{n_2 \times S_2}$$
$$FE_{formate} = \frac{n_{foemate} \times F \times n}{Q_t \times n_3} \times 100\%$$

Where

 n_{Dmso} = The amount of the substance of the internal standard DMSO (0.00063mmol).

n = the number of electrons transferred in the elementary reaction (n is 2 for formare).

 n_1 = Amount of methyl (-CH₃) hydrogen on dimethyl sulfoxide (n₁ = 6).

 n_2 = The amount of carboxyl (-COOH) hydrogen on formate (n_2 = 1).

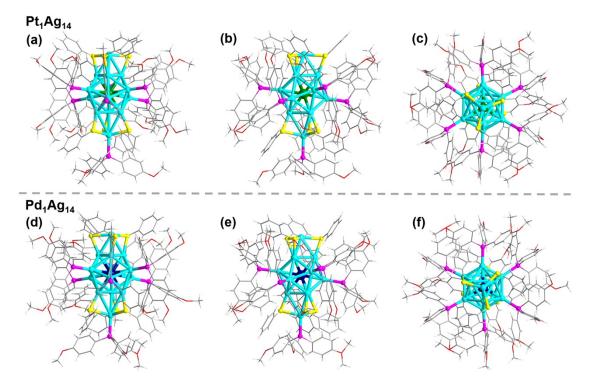
 n_3 = The ratio of cathode reaction solution to total catholyte taken when configuring ¹H NMR (n_3 = 0.016).

 S_I = MestReNova calculates the HCOOH peak area based on the DMSO peak area.

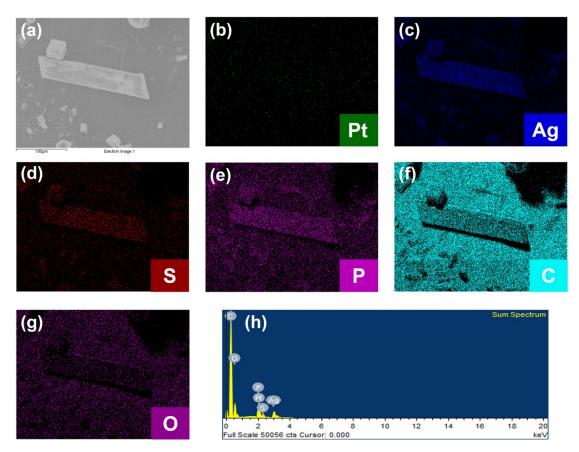
 S_2 = The DMSO peak area in MestReNova is set to 1.


F = the Faradaic constant (96485 C mol⁻¹).

 Q_t = total charge consumed in the electrochemical reaction.


III. DFT calculations

Periodic DFT calculations were performed with the VASP code using the Perdew-Burke-Ernzerhof exchange-correlation function of the generalized gradient approximation (GGA). Projector augmented wave (PAW) pseudopotential was used to describe core-valence interactions, with [Pt]- $6s^{1}5d^{9}$, [Pd]- $4d^{10}$ and [Ag]- $5s^{1}4d^{10}$ as valence electrons. The plane-wave cutoff energy was set to 400 eV. The Brillouin zone of the reciprocal space was sampled with the Γ -centred Monkhorst-Pack scheme, the k-point mesh was set to $1 \times 1 \times 1$ for the geometry optimization. The energy convergence of the self-consistent iteration reached 10^{-5} eV per atom and the Hellmann-Feynman forces convergence was $0.03 \text{ eV} \text{ Å}^{-1}$, ensuring that the structure optimization process converged to a stable structure.


Section 2. Supporting Figures

Scheme S1. Photographs of the synthesis process of the Pt_1Ag_{14} nanocluster. The entire reaction was carried out under ice bath conditions; however, to capture clear images of the reaction, the reaction mixtures were temporarily removed from the ice bath during photography.

Fig. S1 The overall structure of the Pt_1Ag_{14} and Pd_1Ag_{14} nanoclusters. The (a) front view, (b) top view, and (c) top view of the Pt_1Ag_{14} nanocluster; The (d) front view, (e) side view, and (f) top view of the Pd_1Ag_{14} nanocluster. Color labels: green = Pt; dark blue = Pd; light blue = Ag; yellow = S; magenta = P; red = O; grey = C; white = H.

Fig. S2 SEM image and corresponding elemental mapping images of the Pt_1Ag_{14} nanocluster. (a) SEM image of single crystal; (b)-(g) elemental mapping images of Pt, Ag, S, P, C and O elements, respectively; (h) EDS spectrum confirming the presence of above elements (Pt, Ag, S, P, C and O) in Pt_1Ag_{14} nanocluster, which is consistent with the cluster composition obtained by SC-XRD.

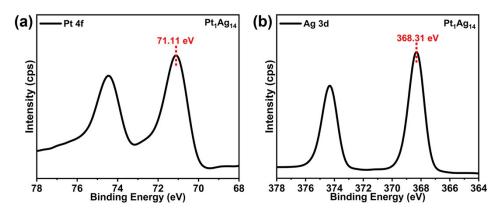
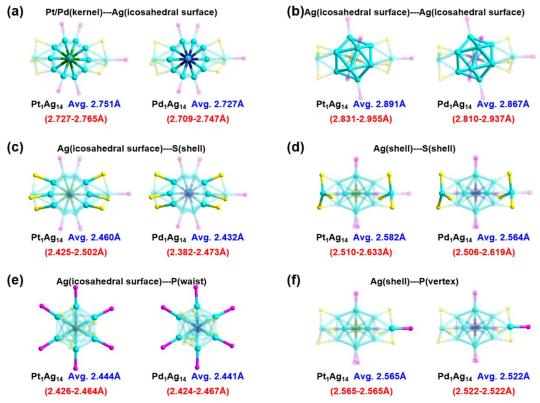
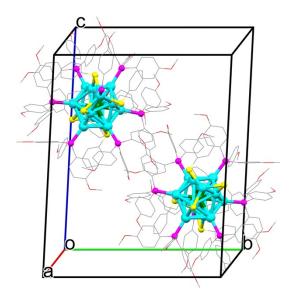




Fig. S3 XPS spectra of the Pt_1Ag_{14} nanocluster. (a) Pt 4f; (b) Ag 3d.

Fig. S4 Structural comparison and bond length among Pt_1Ag_{14} and Pd_1Ag_{14} nanoclusters. (a) Comparison of the bond length of Pt/Pd(kernel)---Ag(icosahedral surface); (b) comparison of the bond length of Ag(icosahedral surface)---Ag(icosahedral surface); (c) comparison of the bond length of Ag(icosahedral surface)---S(shell); (d) comparison of the bond length of Ag(shell)---S(shell); (e) comparison of the bond length of Ag(icosahedral surface)---P(waist); (f) comparison of the bond length of Ag(shell)---P(vertex). The compared bonds are highlighted in solid. Color labels: green = Pt; dark blue = Pd; light blue = Ag; yellow = S; magenta = P.

Fig. S5 A unit cell in the Pt_1Ag_{14} single crystal. Color labels: green = Pt; light blue = Ag; yellow = S; magenta = P; red = O; grey = C. All H atoms are omitted for clarity.

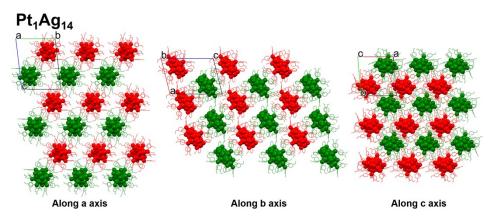


Fig. S6 Packing mode of Pt_1Ag_{14} in the crystal shown. (a) Along a axis; (b) along b axis; (c) along c axis. All H atoms are omitted for clarity. The cluster molecules arranged in different directions show in different colors.

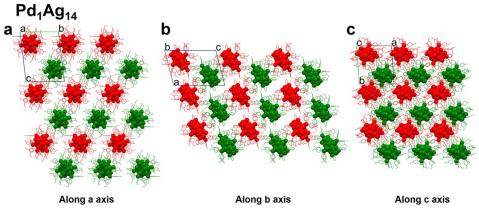


Fig. S7 Packing mode of Pd_1Ag_{14} in the crystal shown. (a) Along a axis; (b) along b axis; (c) along c axis. All H atoms are omitted for clarity. The cluster molecules arranged in different directions show in different colors.

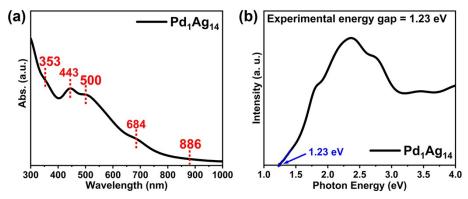


Fig. S8 Characterization of Pd₁Ag₁₄ nanocluster. (a) UV-Vis spectrum; (b) UPS.

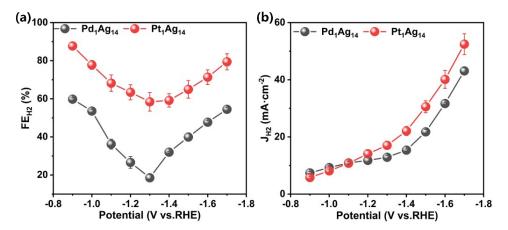


Fig. S9 (a) H_2 faradaic efficiency of the Pd_1Ag_{14}/C (black) and Pt_1Ag_{14}/C (red) at different potentials. (b) H_2 partial current density of the Pd_1Ag_{14}/C (black) and Pt_1Ag_{14}/C (red) at different potentials.

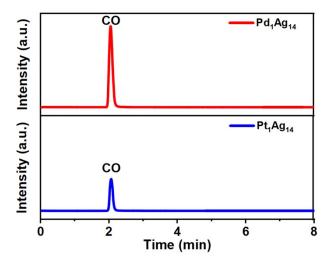


Fig. S10 Gas products (CO) analysis for eCO_2RR on Pd_1Ag_{14}/C and Pt_1Ag_{14}/C . Gas chromatography shows the gas products of eCO_2RR at -1.3 V_{RHE}.

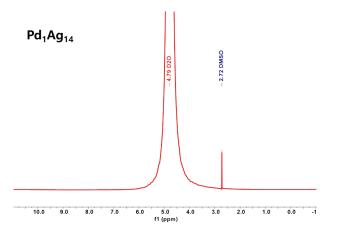


Fig. S11 The ¹H NMR spectra of the catholyte reaction solution for the Pd_1Ag_{14}/C .

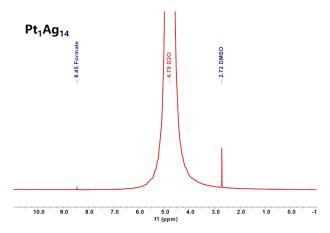


Fig. S12 The ¹H NMR spectra of the catholyte reaction solution for the Pt_1Ag_{14}/C .

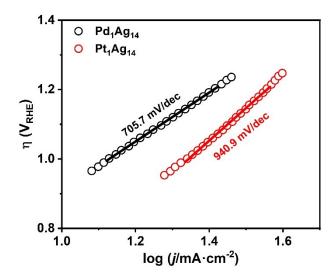


Fig. S13 Tafel plots constructed for the eCO₂RR on the two catalysts.

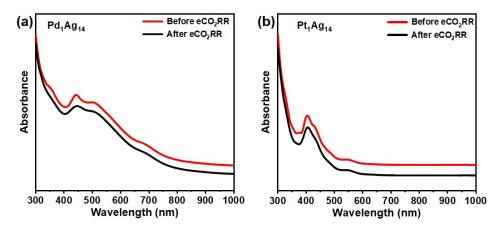


Fig. S14 UV-vis absorbance spectra of the three nanoclusters before and after eCO_2RR . (a) Pd_1Ag_{14} and (b) Pt_1Ag_{14} .

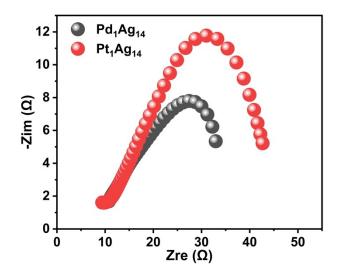


Fig. S15 The Electrochemical Impedance Spectroscopy of Pd_1Ag_{14}/C and Pt_1Ag_{14}/C .

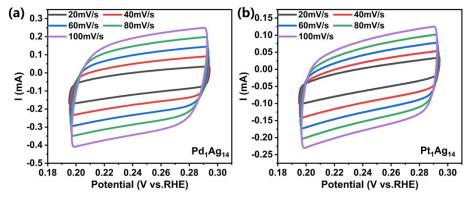


Fig. S16 CV curves at various scan rates (from 20 to 100 mV s⁻¹) of (a) Pd_1Ag_{14}/C and (b) Pt_1Ag_{14}/C .

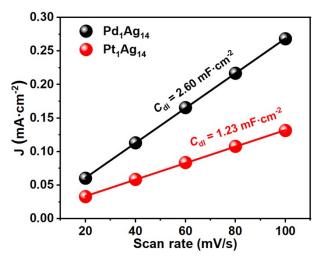


Fig. S17 The comparison of electrochemical double layer capacitance over Pd_1Ag_{14}/C (black line) and Pt_1Ag_{14}/C (red line).

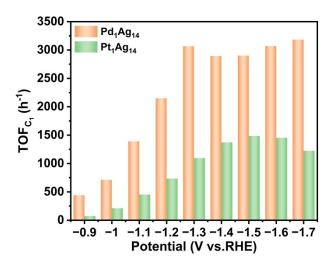


Fig. S18 The turnover frequency of C_1 products was obtained from Pd_1Ag_{14}/C and Pt_1Ag_{14}/C .

Section 2. Supporting Tables

Empirical formula	$C_{183}H_{177}Ag_{14}O_{21}P_7PtS_6$			
Formula weight	4826.66			
Temperature/K	120			
Crystal system	triclinic			
Space group	<i>P</i> -1			
a/Å	19.411			
b/Å	20.798			
c/Å	27.800			
α/°	81.778			
β/°	75.137			
γ/°	83.738			
Volume/Å ³	10706			
Ζ	2			
$\rho_{calc}g/cm^3$	1.497			
μ/mm ⁻¹	2.062			
F(000)	4760.0			
Crystal size/mm ³	0.113 imes 0.091 imes 0.086			
Radiation	Mo Ka ($\lambda = 0.71073$)			
20 range for data collection/°	3.968 to 50.852			
Reflections collected	38476			
Independent reflections	$36476 [R_{int} = 0.172, R_{sigma} = 0.3432]$			
Data/restraints/parameters	36476/2932/1786			
Goodness-of-fit on F ²	0.862			
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0966, wR_2 = 0.2076$			
Final R indexes [all data]	$R_1 = 0.2266, wR_2 = 0.2467$			
Largest diff. peak/hole / e Å ⁻³	2.01/-1.75			

Table S1. The crystal structure parameters for Pt_1Ag_{14} nanocluster.

Atom labels	X	Y	Z	Charge	Min dist	Atomic vol
Pd1	15.00522	14.55735	14.81242	10.2563	1.25858	16.47431
Agl	15.85143	13.30881	12.46315	10.90304	1.10907	23.7125
Ag2	15.8037	17.22564	15.15252	10.94374	1.11189	25.67444
Ag3	16.99509	12.58974	15.08084	10.94768	1.1277	25.81931
Ag4	14.17812	11.88546	14.47345	10.94708	1.12371	25.72403
Ag5-exposed	15.63585	14.66397	19.43827	10.73495	1.11374	40.42889
Ag6	13.09641	14.10876	12.82603	10.90697	1.08516	23.76403
Ag7	17.60724	15.20712	13.92528	10.93853	1.11294	25.77653
Ag8	14.11554	15.81204	17.14969	10.9014	1.11588	23.85542
Ag9	15.1527	16.11552	12.50382	10.90596	1.0802	23.8875
Ag10	12.41901	13.8924	15.68823	10.9395	1.09559	25.39639
Ag11	13.02603	16.55244	14.53949	10.94025	1.11494	25.83097
Ag12	16.93335	15.03114	16.77694	10.90621	1.09207	23.66681
Ag13	14.86863	12.9615	17.10776	10.90016	1.10375	23.66292
Ag14	14.31843	14.46171	9.64894	10.75393	1.15533	22.38931

Table S2. The data of Bader charge analysis for the Pd_1Ag_{14} nanocluster.

Atom labels	X	Y	Z	Charge	Min dist	Atomic vol
Pt1	14.47944	14.16897	14.83601	10.51758	1.28697	18.58694
Agl	14.31372	13.78587	9.68065	10.71844	1.14555	22.33875
Ag2	13.14885	12.91476	12.71515	10.87907	1.08131	23.41792
Ag3	12.4011	12.41415	15.5274	10.92059	1.08051	25.29236
Ag4	11.84778	15.02997	14.34521	10.92461	1.09247	25.21653
Ag5	14.08242	15.64476	12.48877	10.88545	1.08549	23.47917
Ag6	14.98434	11.41224	14.50817	10.93531	1.13317	25.45958
Ag7	15.98352	13.46559	12.59125	10.89175	1.10396	23.3975
Ag8	16.54869	15.93915	14.13223	10.92096	1.08579	25.47028
Ag9	17.09769	13.27467	15.31436	10.92224	1.11704	25.59667
Ag10	15.85494	15.4278	16.92779	10.87515	1.09357	23.59
Ag11	14.84559	12.66357	17.16631	10.87877	1.1161	23.29736
Ag12	12.95172	14.91417	17.05837	10.88674	1.09344	23.50444
Ag13-exposed	14.64354	14.51889	19.4901	10.70281	1.10356	39.79306
Ag14	13.97097	16.91667	15.13859	10.93361	1.11706	25.41097

Table S3. The data of Bader charge analysis for the Pt_1Ag_{14} nanocluster.