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Table S1. Provides a concise synthesis of the three most critical 

challenges hindering PSC commercialization and demonstrates how our 

multimodal machine learning approach addresses each limitation. The 

table first identifies stability mechanisms as a key challenge, where 

traditional methods force undesirable trade-offs between efficiency and 

device longevity. Our solution leverages grain size optimization, 

achieving strong predictive accuracy (R²= 0.86) as detailed in Section 3.3. 

Second, it highlights deposition technique limitations, particularly the 

scalability constraints of spin-coating methods, which our processing 

parameter fusion strategy overcomes through dynamic weighting of 

fabrication variables (Section 2.1). Finally, the table documents persistent 

gaps in bulk defect mitigation , a challenge our CBAM-enhanced 

detection system resolves by simultaneously identifying surface and 

subsurface defects with high precision (Section 3.1). This structured 

comparison serves as both a quick-reference guide for readers and a 

validation framework showing how our methodology advances beyond 

prior approaches in each critical area. The cited references anchor our 

solutions to established literature, while cross-references to results 

sections enable easy verification of claims.

Table S1. Key Challenges and Our Solutions.

Challenge Prior Limitations Our Approach

Stability Mechanisms
Efficiency-stability trade-

offs

Grain size optimization 

(R²=0.86)

Deposition 

Techniques

Spin-coating scalability 

issues
Processing parameter fusion

Defect Passivation Bulk defect mitigation gaps CBAM defect detection
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Table S2: Quantitative Comparison with Existing Models

Aspect GNNOpt AEL Our Work

Objective Predict optical 

properties

Predict 

photovoltaic 

performance

Enhance efficiency 

and stability

Model/Approach Graph Neural 

Network with 

universal 

embedding

Neural Network 

with optical inputs

Multimodal 

prediction

Predicted 

Properties

Optical properties Photovoltaic 

performance

PCE, bandgap, 

stability

Dataset Size 944 materials 368 devices 1,209 samples

Performance 

Metrics

R² = 1.00 R² values: Voc 

(0.47), Jsc (0.77), 

FF (0.58)

R² = 0.84 (PCE), R² 

= 0.95 (bandgap), 

RMSE = 1.891 

(PCE)

Key Findings High-quality 

predictions with a 

small dataset

High accuracy in 

predicting solar 

cell performance

Multimodal 

approach, stability 

classification

Application Screening 

photovoltaic 

materials

Solar cell 

assessment

Material 

optimization, stability 

evaluation

Relevance Accelerating 

material discovery

Accelerating 

perovskite solar 

cell development

Advancing 

perovskite solar cell 

technology

The Table S2 provides a detailed comparison of our work with two existing 

models, GNNOpt and AEL, across several key aspects. GNNOpt aims to predict 

optical properties using a Graph Neural Network with universal embedding, achieving 

high-quality predictions with a small dataset of 944 materials. AEL focuses on 
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predicting photovoltaic performance using a Neural Network with optical inputs, 

demonstrating high accuracy in predicting solar cell performance metrics such as Voc, 

Jsc, and FF with a dataset of 368 devices. Our work, however, introduces a 

multimodal prediction approach that integrates SEM image features with material and 

processing data, enhancing the understanding of PCE, bandgap, and stability. 

Leveraging a larger dataset of 1,209 samples, our model achieves an R² of 0.84 for 

PCE and 0.95 for bandgap predictions, with an RMSE of 1.891 for PCE. This 

multimodal approach, combined with stability classification, not only provides a more 

comprehensive understanding of device performance but also positions our work as a 

significant advancement in the field of perovskite solar cell optimization. While 

GNNOpt accelerates material discovery and AEL speeds up solar cell development, 

our work advances perovskite solar cell technology by optimizing material selection 

and evaluating stability, offering a more holistic and robust solution for device 

optimization.

Table S3: Comparison of models with and without SEM Micro features.

Model Dataset Size Features RMSE R²

With SEM Microfeatures

CBR 1209 220 1.95 0.83

RFR 1209 220 1.89 0.84

GBDT 1209 220 1.97 0.82

ABR 1209 220 2.66 0.68

Without SEM Microfeatures

CBR 1209 20 2.58 0.70

RFR 1209 20 2.35 0.75

GBDT 1209 20 2.49 0.72

ABR 1209 20 3.03 0.58

 Table S3 presents a comparative analysis of machine learning models for 

predicting perovskite solar cell (PSC) performance, evaluating their accuracy with 
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and without the inclusion of SEM microfeatures. The results demonstrate that 

integrating SEM-derived structural data (e.g., grain size, defects) significantly 

enhances predictive performance across most models. For instance, CBR achieves a 

24% reduction in RMSE (2.58 → 1.95) and a 19% increase in R² (0.70 → 0.83) when 

SEM features are included, while RFR shows a 20% RMSE improvement (2.35 → 

1.89) and a 12% R² gain (0.75 → 0.84). Similarly, GBDT exhibits a 21% RMSE 

decrease (2.49 → 1.97) and a 14% R² boost (0.72 → 0.82). In contrast, ABR shows 

minimal improvement (RMSE: 2.66 vs. 3.03; R²: 0.68 vs. 0.58), suggesting its limited 

compatibility with high-dimensional SEM data. These findings highlight the critical 

role of SEM microfeatures in capturing microstructural nuances—such as grain 

boundaries and defect densities—that directly influence PSC efficiency. The superior 

performance of CBR, RFR, and GBDT underscores the value of multi-modal data 

integration (SEM + material/processing parameters) for robust predictive modeling, 

aligning with the study’s emphasis on microstructure-driven optimization strategies. 

The exception of ABR further emphasizes the need for model-specific feature 

engineering when leveraging SEM data.

Table S4.  Key Hyperparameters and Training Settings

Component Parameter Value/Setting Rationale

Input 
Preprocessing Resizing 224×224 (SEM 

images)
Match VGG16/CNN input 

requirements.

Normalization [0, 1] or (X-μ)/σ Standardize pixel 
intensities.

CNN 
Architecture

Conv2D Kernel 
Size 3×3 Balance locality and 

efficiency.
Stride 2 (downsampling) Reduces spatial dimensions.

Channels 16 → 32 → 64 Hierarchical feature 
extraction.

Training Optimizer Adam (lr=0.001) Adaptive learning rate.
Batch Size 32 Memory-efficient training.

Epochs 100 + Early 
Stopping Prevents overfitting.

PCA n_components min(n_samples, 
n_feat) Retains 95% variance.
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Table S4 documents the critical hyperparameters and training configurations 

used in our multimodal machine learning framework. For input preprocessing, SEM 

images were resized to 224×224 pixels to align with standard CNN architectures (e.g., 

VGG16) and normalized using either [0,1] scaling or (X-μ)/σ standardization to 

ensure consistent pixel intensity distributions. The CNN backbone employs 3×3 

convolutional kernels with stride 2, optimally balancing local feature extraction with 

computational efficiency, while channel dimensions expand hierarchically 

(16→32→64) to capture multi-scale microstructural features. Training utilizes the 

Adam optimizer (lr=0.001) for adaptive gradient updates, with a batch size of 32 to 

maximize GPU memory utilization. We implemented early stopping during 100-

epoch training cycles to prevent overfitting, monitored through validation loss. For 

feature reduction, PCA retains 95% variance by dynamically setting n_components 

based on sample-feature ratios. This configuration was systematically optimized 

through ablation studies (Section 2.3) to achieve the reported PCE prediction 

performance (R²=0.84).

2.4. Model training

Our model utilizes machine learning algorithms CBR, GBDT, RFR, and ABR 

for regression and classification tasks. K-fold cross-validation ensures robust training, 

and performance is evaluated using RMSE, R², MCC, sensitivity, specificity, accuracy, 

and AUC. These metrics validate the model's ability to predict PSC efficiency and 

stability, supporting its application in material optimization and renewable energy 

research. Figure S1 visually compares actual PCE values with predictions from RFR, 

GBDT, CBR, and ABR models, highlighting each algorithm's predictive accuracy. 

Each model brings unique strengths ABR [33]  is a boosting algorithm that 

sequentially fits weak learners, focusing on the errors of predecessors and adjusting 

weights of miss classified samples, effectively handling noisy datasets. GBDT [34]  

builds an ensemble of decision trees in a forward stage-wise manner, fitting new trees 

to the residuals of previous models, excelling in capturing nonlinear relationships and 

robustness to outliers. RFR [35]  constructs multiple decision trees trained on 

random data subsets, averaging their predictions to manage complex nonlinear 

relationships and high-dimensional datasets, enhancing reliability and accuracy. CBR 

[36] seamlessly integrates categorical features, manages missing values, and prevents 

over fitting. Figure S2 presents the performance of an ensemble model, combining 
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multiple models to improve predictive accuracy. Evaluated using RMSE and R2, the 

plot compares predicted values against true values. Points close to the diagonal line 

indicate high accuracy, demonstrating the ensemble model's reliability and low error 

rate. This figure underscores the ensemble model's effectiveness in predicting PSCs 

properties. In this study, the performance of the regression models was evaluated 

using two primary metrics: the Root Mean Square Error (RMSE) [37] and Pearson 

correlation coefficient (R²). The RMSE measures the average distance between the 

observed values and the model's predictions, calculated as the square root of the 

mean of the squared differences between predicted and actual values. A lower 

RMSE indicates that the model's predictions are closer to the actual values. The 

formula for RMSE is:

𝑅𝑀𝑆𝐸 =
1
𝑛

𝑛

∑
𝑗 = 1

(𝑦𝑖 ‒ ŷ𝑖)
2 (1)

Where:  sample data points, y predictive value for the  j-th observation,  observed 𝑛 ŷ𝑖

value for j-th observation. The RMSE is scale-dependent, so it's often used as a 

relative measure, especially after normalizing the data. The R² [38] measures the 

linear relationship between two sets of data, with values ranging from -1 to 1. An 

R² of 0 implies no correlation, an R² of 1 indicates a perfect positive correlation, 

and an R² of -1 indicates a perfect negative correlation. The formula for R² is:

𝑅2 = 1 ‒

𝑁

∑
𝑗 = 1

 (𝑦𝑖 ‒ ŷ𝑖)
2

𝑁

∑
𝑗 = 1

(𝑦𝑖 ‒ ȳ)2

(2)

where ŷi represents the predicted value of yi and ȳ is the mean of observed 

data. Together, these metrics provide a comprehensive assessment of the model's 

predictive accuracy and its ability to classify PSCs into different stability categories.
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  Figure S1. Comparison of Actual Vs Predicted PCE.

Figure S5 visually evaluates the predictive accuracy of four machine learning 

models by plotting actual PCE values against predicted values. The closer the points 

are to the diagonal line, the more accurate the model, with GBDT and CBR appearing 

to outperform ABR.

Figure S2. Ensemble Model Performance.
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Figure S2 illustrates the high predictive accuracy of an ensemble machine 

learning model by comparing predicted values against true values. The close 

alignment of data points to the diagonal line indicates low error and strong 

explanatory power, confirming the model's reliability.

Table S5.  Performance Metrics by Class.

Class Description Precision Recall F1-score

Stable (T95 > 1000 hours) 92% 85% 0.88

Unstable (T95 < 100 hours) 89% 94% 0.91

Table S5 provides detailed performance metrics for the stability classification 

model, categorized by T95 values. For stable samples (T95 > 1000 hours), the model 

achieves 92% precision, 85% recall, and an F1-score of 0.88, indicating strong 

performance. For unstable samples (T95 < 100 hours), it attains 89% precision, 94% 

recall, and an F1-score of 0.91, showing slightly better performance for this class. 

Table S6 further examines the model’s performance at the boundaries of stability 

classifications, highlighting critical areas where accuracy may vary.

Table S6.  Performance at Stability Boundaries

Metric Value

Boundary Accuracy (±20% of 100 hours) 78%

Confidence Score Range for Boundary Cases 0.4-0.6
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Metric Value

Confidence Score Range for Clear Cases >0.8

Table S6 examines the model's performance at the boundaries of stability 

classifications. It shows a boundary accuracy of 78% for samples near the stability 

threshold (±20% of 100 hours), indicating moderate uncertainty. Confidence scores 

for boundary cases range from 0.4 to 0.6, while clear cases have scores above 0.8, 

highlighting higher certainty in predictions away from the boundary.

Table S7.  Cross-Validation Results

Metric Value

Mean Accuracy 87.2% ± 1.5%

Boundary Case Accuracy 76.8% ± 2.1%

Table S7 provides a summary of the cross-validation results, highlighting the 

model's generalization ability. The model achieves a mean accuracy of 87.2% ± 1.5% 

across different data splits, indicating consistent performance. However, for boundary 

cases (samples near the stability threshold), the accuracy drops to 76.8% ± 2.1%, 

suggesting these cases are more challenging for the model.
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Figure S3: Overview of T95 and Log T95 Distributions and Class Label 
Distribution.

Figure S3 presents the T95 variable's distribution, its logarithmic 

transformation (Log T95), and the class label distribution. The figure highlights data 

skewness and clustering, shows normalized Log T95 data for easier analysis, and 

reveals category balance or imbalance, all of which are crucial for preprocessing and 

model development.

Experimental section: 
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Figure S4.(a) Current-Voltage (J–V) curves comparing control devices (with CsI 

additive) and target devices (without CsI). The control device exhibits a Jsc of 21.84 

mA/cm², Voc of 1.115 V, FF of 79.22%, and an EFF of 19.38%. The target device 

shows improved performance with a Jsc of 23.84 mA/cm², Voc of 1.13 V, FF of 

80.98%, and an EFF of 21.84%. (b) SEM image of the perovskite film for the control 

device. (c) SEM image of the perovskite film for the target device, highlighting the 

similar microstructures despite the difference in CsI additive.

Device Fabrication:

The devices were fabricated using a regular structure on ITO glass substrates 

with a sheet resistance of approximately 9 Ω sq−1, purchased from OPVTECH Inc. 

The key materials included Formamidinium Iodide (FAI), methyl ammonium chloride 

(MACl), and methyl ammonium bromide (MABr) from Xi’an Polymer Light 
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Technology Corp., PbI2 (99.8%), Li-TFSI (99%), 4-tert-butylpyridine (tBP, 96%), 

and CsI (99.99%) from Sigma-Aldrich, and Tin (IV) oxide from Alfa Aesar. Solvents 

like DMF, DMSO, and IPA were from TCI, and Spiro-OMeTAD (99.5%) was from 

Feiming Science and Technology Co., Ltd.

Preparation:

The ITO substrates were cleaned by sonication in detergent, deionized water, 

and isopropanol for 15 minutes each, then dried under nitrogen. They were treated 

with ultraviolet-ozone for 30 minutes before spin-coating a Tin (IV) oxide solution at 

4000 rpm for 30 seconds and annealing at 150 °C for 30 minutes.The perovskite layer 

was prepared using a modified two-step method in a glovebox. A 1.4 M PbI2 

precursor in DMF was spin-coated on the SnO2/ITO substrate at 1500 rpm for 30 

seconds and dried at 70 °C for 1 minute. For the control group, a mixture of 

FAI:MAI:MACl in IPA was dropped on the PbI2 film and annealed at 150 °C for 15 

minutes under 30-40% relative humidity. The target group used a similar process but 

omitted the CsI additive. The Spiro-OMeTAD solution, composed of 72.3 mg Spiro-

OMeTAD, 30 μL TBP, and 35 μL Li-TFSI solution in 1 mL chlorobenzene, was spin-

coated on the perovskite film at 4000 rpm for 30 seconds. Finally, a 100 nm Au 

electrode was deposited by thermal evaporation. Both devices were made using a two-

step method. The control device, using FA0.9MA0.1PbI3 + MACl, achieved an 

efficiency of 19%, while the target device, using (FA0.9MA0.1)0.87Cs0.13PbI3 + MACl, 

achieved a higher efficiency of 22%.

Table S8. Hyperparameter settings for machine learning models (CBR, GBDT, RFR, 

and ABR) used in this study. These configurations were carefully selected to optimize 

the prediction accuracy of perovskite solar cell (PSC) efficiency

Table S8:  Machine Learning Model Hyperparameters for PCE prediction. 

Model Hyperparameters

CBR - boosting_type: 'Ordered', -
 one_hot_max_size: 255, 

 - depth: 7,- iterations: 1500,- l2_leaf_reg: 3, 
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 - learning_rate: 0.05,- loss_function: 'RMSE',

 -early_stopping_rounds: 200,- random_seed: 42,

 - silent: True

GBDT - n_estimators: 100,- learning_rate: 0.1,-
 max_depth: 3

RFR - n_estimators: 300,- max_depth: 15,-
 min_samples_leaf: 

 2,- min_samples_split: 4

Figure S5. Comparative Cross-Validation Performance Assessment of Regression 
Models.

Figure S6, titled "10-Fold Cross-Validation R² Scores for All Models," 

compares the R² scores of four machine learning models—CatBoost (CB), Random 

Forest (RFR), Gradient Boosting (GBDT), and AdaBoost (ABR)—across 10 folds of 

cross-validation. Higher R² scores on the Y-axis indicate better performance in 

explaining the variance in the data.

Each row in Table S9 corresponds to a different machine learning model, and 

the settings provided in the second column are the hyperparameters used to configure 

each model in the script. These hyperparameters are the key settings that define the 

behavior and performance of the models during training.
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Table S9: Machine Learning Model Hyperparameters for bandgap prediction.

Models Hyperparameters

ABR - n_estimators: 100,- learning_rate: 0.5, -
 random_state: 42

GBDT - n_estimators: 100, - learning_rate: 0.1,-
 max_depth: 3, - random_state: 42

RFR - n_estimators: 100, - max_depth: 5, -
 random_state: 42

CBR - iterations: 100, - learning_rate: 0.1, -
 depth: 6,- random_seed: 42, - verbose: 0

Figure S6:Cross-Validation R²  Scores Overview.
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Figure S7. Confusion Matrix for Stability Classification of PSC.

Figure S7 presents a confusion matrix evaluating the model's performance in 

classifying perovskite solar cell stability. It shows perfect accuracy for tested samples, 

with no misclassifications between Class 1 (unstable) and Class 4 (very stable). In 

independent validation, the model achieved 88.9% accuracy, correctly identifying 8 

out of 9 unstable samples, with only one misclassified as very stable. This highlights 

the model's reliability in predicting unstable PSCs.


