Electronic Supplementary information for:

Boron-containing Electron Transport Materials Based on Naphthalene Diimide for Organic Solar Cells: a Theoretical Study

Shu-Pu Yao, ^a Jie Yang, *^a Qian Guo, ^a Xiao-Juan Yang, ^b and Quan-Song Li *^a

^a Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China

^b Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering,
 Ministry of Industry and Information Technology, School of Chemistry and Chemical
 Engineering, Beijing Institute of Technology, Beijing 100081, China.

*E-mail: jieyang24@bit.edu.cn, liquansong@bit.edu.cn

Contents

Section S1 Calculation details on electron mobility	S3
Section S2 Calculation details on net transferred charge	S4
Section S3 Calculation details on interfacial binding energy	
Figure S1 Benchmark of the used functionals	S6
Table S1 Details of the single-molecule structure.	S7
Table S2 TD-B3LYP vertical excitations at NDIN-S0	S8
Table S3 TD-B3LYP vertical excitations at E1-S0	
Table S4 TD-B3LYP vertical excitations at E2-S0	
Table S5 TD-B3LYP vertical excitations at E6-S0	S11
Figure S2 Paths of electron transfer	
Figure S3 Analysis of non-covalent interaction	S14
Table S6 Details for electron mobility of the studied molecules	
Table S7 Details of electron excitation	S17

Section S1 Calculation details on electron mobility

The electron hopping rate (k) is expressed as:

$$k = \frac{2\pi^2}{h} \nu^2 \frac{1}{\sqrt{\pi \lambda k_B T}} exp^{m} \left[\frac{-\lambda}{4k_B T}\right]$$

where *h* is the Planck constant, k_B is the Boltzmann constant, *v* is the transfer integral, *T* is the temperature (298.15 K in our calculation), and λ is the reorganization energy. In this work, we consider only the internal reorganization energy which mainly reflects the geometric relaxation during the charge transfer process and the barriers to another molecule. It can be expressed as follows:

$$\lambda = \left(E_0^* - E_0\right) + \left(E_-^* - E_-\right)$$

where E_0^* is the anion energy in the stable configuration of the neutral molecule; E_0 is the energy of neutral molecule; E_-^* is the energy of the neutral molecule in the anionic stable configuration; E_- is the energy of the anion molecule.¹

The transfer integral v was computed as follows:

$$v = \langle \psi_{i}^{LUMO} | SC \varepsilon C^{-1} | \psi_{f}^{LUMO} \rangle$$

where ψ_{i}^{LUMO} and ψ_{f}^{LUMO} represent the LUMOs of the isolated molecules i and f, respectively. *S* denotes the overlap matrix between the molecules. *C* is the Kohn-Sham molecular orbital coefficient, and ε is the intrinsic energy of the dimer without interaction.² The electron mobility (μ) of the investigated molecules was calculated using the Einstein relation.³

$$\mu = \frac{1}{2dk_B T} \Sigma r_i^2 k_i P_i$$

where *d* is the spatial dimension, and generally d = 3 represents the three-dimensional system, *e* is the number of elementary charge (1.6×10⁻¹⁹ C), r_i is the distance for each carrier hopping step, typically replaced by the mass center of the dimer. k_i represents the probability of carrier hopping along the i path. P_i is defined as the hopping probability, which can be obtained using:

$$P_i = \frac{k_i}{\Sigma k_i}$$

Section S2 Calculation details on net transferred charge

The net transferred electrons (Δq) from donor (D) to acceptor (A) can be obtained by using the following formula:

$$\Delta q = Q_{D,A} - Q_{A,D}$$

where $Q_{D,A}(Q_{A,D})$ corresponds to the electron transfer from D(A) to A (D) during the excitation, which can be calculated from:

$$Q_{D,A} = \Sigma_{i}^{OCC} \Sigma_{a}^{vir} \left[\left(\omega_{i}^{a} \right)^{2} - \left(\omega_{i}^{a} \right)^{2} \right] \Sigma_{R \in D} \Theta_{R,i} \Sigma_{S \in A} \Theta_{S,a}$$

where ω_i^a and ω_i^a are the configuration coefficients of the excitation molecular orbital i

to a and the de-excitation molecular orbital a to i, respectively; $\Theta_{R,i}$ ($\Theta_{S,a}$) is the contribution of atom R (S) to the molecular orbital i (a).

The distance from the hole centroid to the electron centroid can be expressed from the following equation.⁴

$$D = \sqrt{D_X^2 + D_Y^2 + D_Z^2}$$

The charge transfer (CT) length in X/Y/Z can be measured by the centroid distances between the hole and the electron in corresponding directions:

$$D_{X,Y,Z} = \left| N_{ele} - N_{hole} \right|$$

The electron centroid (N_{ele}) and hole centroid (N_{hole}) can be calculated from the following equation:

$$N_{ele/hole} = \int n\rho^{ele/hole}(r)dr$$

where *n* is the X (Y or Z) component of position vector *r*. $\rho^{ele/hole}$ presents the spatial charge distribution.

Section S3 Calculation details on interfacial binding energy

The binding energy of E/A interface is calculated by the following formula:

$$E_{inter} = E_{E/A} - E_E - E_A + E_{BSSE}$$

where $E_{\text{E/A}}$, E_{E} , E_{A} , and E_{BSSE} represent the energy of the optimized E/A interface system, the electron transport material, the acceptor, and the basis set superposition error (BSSE)³⁸, respectively. The larger the E_{inter} , the stronger the combination of the interface.

References

- 1. H.-Y. Chen and I. Chao, *Chem. Phys. Lett.*, 2005, **401**, 539-545.
- 2. X. Yang, Q. Li and Z. Shuai, *Nanotechnology*, 2007, **18**, 424029.
- 3. V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey and J.-L. Brédas, *Chem. Rev.*, 2007, **107**, 926-952.
- 4. C. Yao, Y. Yang, L. Li, M. Bo, J. Zhang, C. Peng, Z. Huang and J. Wang, *J. Phys. Chem. C*, 2020, **124**, 23059-23068.
- M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, G. Petersson and H. Nakatsuji, *Gaussian16 (Revision A. 03)*, 2016, 3.

Benchmark of the used functionals

200

0

10

(a) -3.85 BMK -3.90 M062X $E_{\rm LUMO}$ (eV) **B3LYP** -3.95 **PBE0** Exp. -4.00 -4.05 PBE 0 10 20 30 40 **50** 60 HF(%) **(b)** 600 Maximum absorption wavelength (nm) PBE **B3LYP** Exp. PBEO BMK M062X

Figure S1. (a) The lowest unoccupied orbital (LUMO) energy and (b) maximum absorption wavelength of NDIN with different functionals. The dashed lines indicate the experimental values.

HF(%)

30

40

50

60

20

Details of the single-molecule structure

Table S1. The bond length changes (BLC, in Å) between NDIN and designed molecules.

	NDIN	E1	E2	E3	E4	E5	E6
1	0	-0.006	-0.006	0.119	0.120	0.119	-0.006
2	0	0.060	0.060	0.000	0.000	0.062	0.060
3	0	0.186	0.182	0.001	0.001	0.188	0.186
4	0	0.013	0.013	-0.001	-0.001	0.013	0.013
5	0	0.000	-0.001	0.000	0.000	0.001	0.000
6	0	0.019	0.021	0.000	0.000	0.019	0.019
7	0	-0.004	-0.008	0.000	0.000	-0.004	-0.004
8	0	0.010	0.020	0.000	0.000	0.010	0.010
9	0	-0.001	0.000	0.000	0.000	-0.001	-0.001
10	0	0.003	0.022	0.000	0.000	0.003	0.003
11	0	0.001	0.015	0.000	0.000	0.001	0.000
12	0	-0.002	0.188	0.000	0.000	-0.003	-0.002
13	0	0.000	0.060	0.000	0.000	0.000	0.000
14	0	0.000	-0.006	0.000	0.120	0.000	0.120
15	0	0.009	0.009	0.000	0.000	0.009	0.009
16	0	0.000	0.008	0.000	0.000	0.000	0.000

Details of molecular orbitals

Table S2. Relative TD-B3LYP vertical excitation energy (ΔE) and wavelength (λ) at **NDIN**-S₀ together with the electronic configuration (weight in the parenthesis, orbital below the Table) and oscillation strength (*f*).

State	Electronic config	guration (weight)	$\Delta E/eV$	λ/nm	f
S_0	-		0.00	-	-
S_1	HOMO→L	UMO(0.71)	1.96	631	0.0000
S_2	HOMO-1→I	LUMO(0.71)	1.97	630	0.0006
S ₃	HOMO-3→I	LUMO(0.70)	3.24	383	0.0000
S_4	HOMO-2→I	LUMO(0.66)	3.35	370	0.3108
200 200 200	*****	****	૾ૢૡૺ	*	\$ \$
	НОМО-3	НОМО-2		HOMO-1	
ૡૺૢૢૢૢૢૢૢૢૢ૽ૼૹ૾		****	r R		
	НОМО	LUMO			

Table S3. Relative TD-B3LYP vertical excitation energy (ΔE) and wavelength (λ) at **E1-S**₀ together with the electronic configuration (weight in the parenthesis, orbital below the Table) and oscillation strength (*f*).

	Electronic configura	ation (weight)	$\Delta E/eV$	λ/nm	f
S_0	-		0.00	-	-
\mathbf{S}_1	HOMO-1→LU	MO(0.65)	1.97	628	0.0303
S_2	HOMO-2→LU	2.06	603	0.0061	
S ₃	HOMO→LUM	O+1(0.68)	2.12	585	0.0006
S_4	HOMO→LUN	4O(0.68)	2.13	581	0.0028
3	HOMO-2	HOMO-1	**************************************	HOM	0

Table S4. Relative TD-B3LYP vertical excitation energy (ΔE) and wavelength (λ) at **E2-S**₀ together with the electronic configuration (weight in the parenthesis, orbital below the Table) and oscillation strength (*f*).

State	Electronic config	uration (weight)	$\Delta E/\mathrm{eV}$	λ/nm	f
S_0	-		0.00	-	-
S_1	HOMO→LU	JMO(0.66)	1.85	672	0.0487
S_2	HOMO-1→L	UMO(0.68)	1.86	667	0.0000
S_3	HOMO-2→L	UMO(0.62)	1.94	638	0.0061
S_4	HOMO-3→L	UMO(0.60)	2.02	613	0.0000
**************************************	HOMO-3	HOMO-2	÷	HOMO-1	
¢	НОМО	LUMO	¢ ¢		

Table S5. Relative TD-B3LYP vertical excitation energy (ΔE) and wavelength (λ) at $\ensuremath{\text{E6-S}}_0$ together with the electronic configuration (weight in the parenthesis, orbital below the Table) and oscillation strength (f).

State	Electronic configuration (weight)	$\Delta E/\mathrm{eV}$	λ/nm	f
S_0	-	0.00	-	-
\mathbf{S}_1	HOMO→LUMO(0.66)	1.97	630	0.0309
S_2	HOMO-1 \rightarrow LUMO(0.64)	2.06	603	0.0053
S_3	HOMO \rightarrow LUMO+1(0.70)	2.24	553	0.0017
S_4	HOMO-1 \rightarrow LUMO+1(0.53)	2.44	508	0.0004
₩	HOMO -1	номо	\$	
*			e Second	

LUMO

Paths of electron transfer

NDIN

Figure S2. The predicted crystal structures and the main electron hopping pathways of the investigated molecules.

Analysis of non-covalent interaction

Figure S3. Intermolecular interaction $(\delta g^{inter}/sign(\lambda_2)\rho \ 2D \ plot \ and \ \delta g^{inter} \ 3D \ map)$ between the electron transport layer and the acceptor IT-4F for (a) IT-4F/NDIN, (b) IT-4F/E3, and (c) IT-4F/E4. The green area indicates weak interaction, and the scatter plot shows the interaction distribution between electron transport layer and acceptor, $sign(\lambda_2)\rho = -0.1 \sim 0.10$ a.u. represents the weak interaction region.

Details of electron transfer and excitation

Table S6. Details for the reorganization energy λ (eV), centroid to centroid distance *d* (Å), the electron transfer integral *v* (eV), the charge hopping rate (k_i) and electron mobility μ (cm² V⁻¹ s⁻¹) of the studied molecules calculated by B3LYP/6-311G(d,p).

Compounds	λ	Path	d	ν	$k_{ m i}$	μ	
		1	7.58	-5.81×10 ⁻²	2.04×10 ¹²		
		2	7.58	5.81×10 ⁻²	2.04×10^{12}		
NDDI	0.20	3	5.54	-3.39×10 ⁻²	6.93×10 ¹¹	5 110 ²	
NDIN	0.39	4	5.54	-3.41×10 ⁻²	7.01×10^{11}	5.1×10-2	
		5	5.54	-3.39×10-2	6.93×10 ¹¹		
		6	5.54	-3.40×10 ⁻²	6.97×10 ¹¹		
		1	6.00	4.49×10 ⁻³	1.93×10 ⁸		
		2	6.00	4.49×10 ⁻³	1.93×10 ⁸		
		3	6.34	2.76×10 ⁻²	7.28×10^{9}		
F 1	0.70	4	6.99	-4.27×10-2	1.74×10^{10}	4.2×10-4	
EI	0.78	5	8.70	-1.83×10-3	3.20×10 ⁷	4.3×10-4	
		6	8.75	-2.77×10 ⁻⁵	7.33×10^{3}		
		7	8.77	7.38×10 ⁻⁵	5.21×10 ⁴		
		8	9.62	4.71×10 ⁻³	2.12×10^{8}		
		1	4.53	3.76×10-2	1.68×10 ¹¹		
		2	4.53	9.26×10 ⁻²	1.02×10^{12}		
		3	22.85	4.48×10 ⁻⁶	2.39×10 ³		
		4	22.85	4.49×10 ⁻⁶	2.40×10 ³	1 2 10 2	
50		5	12.35	9.95×10 ⁻⁶	1.18×10^{4}		
E2	0.54	6	12.35	9.95×10 ⁻⁶	1.18×10^{4}	1.2×10-2	
		7	12.99	5.61×10 ⁻⁴	3.74×10 ³		
		8	12.99	-4.98×10 ⁻⁵	2.95×10 ⁵		
		9	12.99	-4.97×10 ⁻⁵	2.94×10 ⁵		
		10	12.99	5.60×10 ⁻⁴	3.73×10^{7}		
		1	5.24	-7.68×10 ⁻²	3.56×10 ¹²		
		2	5.32	-3.23×10 ⁻²	6.29×10 ¹¹		
		3	7.59	-1.09×10 ⁻²	7.17×10^{10}		
F 2	0.20	4	7.59	-1.09×10 ⁻²	7.17×10^{10}	5 410 2	
E3	0.39	5	9.62	-2.89×10-3	5.04×10 ⁹	5.4×10-2	
		6	8.81	-6.17×10-5	2.30×10^{6}		
		7	8.58	-2.78×10-5	4.66×10 ⁵		
		8	9.90	-1.60×10 ⁻³	1.54×10^{9}		
	0.20	1	5.36	-0.1	6.03×10 ¹²	1.1.10.1	
E4	E4	0.39	2	5.36	0.1	6.03×10 ¹²	1.1×10-1

		3	7.71	2.67×10-4	4.30×10 ⁷	
		4	7.71	-2.74×10 ⁻⁴	4.53×10^{7}	
		5	9.39	4.25×10 ⁻³	1.09×10^{10}	
		6	9.39	4.71×10-7	1.34×10^{2}	
		7	9.39	4.79×10 ⁻⁷	1.38×10^{2}	
		8	9.12	4.25×10-3	1.09×10^{10}	
		1	14.24	-3.44×10 ⁻⁵	1.13×10 ⁴	
		2	14.24	-3.24×10 ⁻⁵	1.00×10^{4}	
Γ.5	0.70	3	8.80	1.18×10-3	1.33×10 ⁷	4.0×10-4
ES	0.78	4	7.75	3.77×10 ⁻²	1.36×10^{10}	4.8×10
		5	8.41	-1.36×10 ⁻³	1.77×10^{7}	
		6	8.98	2.76×10 ⁻²	7.28×10^{9}	
		1	8.88	1.57×10 ⁻²	2.36×10 ⁹	
		2	6.91	1.54×10 ⁻²	2.27×10 ⁹	
		3	5.81	9.78×10 ⁻²	9.14×10 ¹⁰	
Ε(0.79	4	6.30	1.23×10 ⁻²	1.45×10 ⁹	1.0×10^{-3}
Eo	0.78	5	6.91	1.54×10 ⁻²	2.27×10 ⁹	1.8×10 5
		6	6.30	1.23×10 ⁻²	1.45×10^{9}	
		7	20.38	4.31×10 ⁻⁸	1.78×10 ⁻²	
		8	20.38	4.09×10 ⁻⁸	1.59×10 ⁻²	

PBDB-T-2F/IT-4F								
Excited	<i>E</i> /eV	λ/nm	f	$\Delta q/e$	D index	Sr index		
states								
\mathbf{S}_1	2.226	557	2.195	0.054	0.389	0.751		
S_2	2.536	489	0.641	0.597	2.209	0.550		
S_3	2.650	468	0.168	0.370	1.401	0.688		
S_4	2.831	438	0.560	0.109	0.486	0.763		
S_5	3.065	404	0.042	0.039	2.131	0.675		
S_6	3.197	388	0.021	0.684	2.703	0.553		
S_7	3.239	383	0.091	0.182	0.958	0.696		
S_8	3.297	376	0.060	0.002	3.108	0.646		
S_9	3.344	371	0.051	0.506	2.066	0.677		
S_{10}	3.387	366	0.022	0.102	0.984	0.717		
S ₁₁	3.428	362	0.120	-0.023	1.594	0.758		
S ₁₂	3.471	357	0.050	0.337	5.713	0.699		
S ₁₃	3.500	354	0.018	0.518	5.211	0.644		
S ₁₄	3.539	350	0.061	0.225	1.747	0.701		
S ₁₅	3.549	349	0.042	-0.061	0.588	0.635		
S ₁₆	3.597	345	0.010	0.247	2.676	0.648		
S ₁₇	3.614	343	0.001	-0.006	0.652	0.576		
S_{18}	3.628	342	0.036	0.034	0.315	0.625		
S ₁₉	3.629	342	0.008	0.002	0.539	0.555		
S_{20}	3.661	339	0.149	-0.055	0.992	0.743		
S ₂₁	3.695	336	0.051	0.517	1.965	0.637		
S ₂₂	3.780	328	0.038	0.457	1.952	0.686		
S ₂₃	3.868	321	0.124	0.197	1.675	0.780		

Table S7. Excitation energies (*E* and λ), oscillation strength (*f*), *D* index, *Sr* index, and the amount of charge (Δq) transferring from the D/A/E for the lowest 40 excited states of the studied interfaces calculated by CAM-B3LYP/6-311G(d,p).

S ₂₄	3.914	317	0.016	0.011	1.681	0.472
S ₂₅	3.917	317	0.018	0.441	4.227	0.686
S ₂₆	3.961	313	0.024	0.121	0.940	0.784
S ₂₇	3.982	311	0.054	-0.116	0.762	0.775
S ₂₈	3.994	310	0.008	0.098	1.772	0.457
S ₂₉	4.010	309	0.156	0.091	1.051	0.738
S ₃₀	4.038	307	0.013	-0.023	0.532	0.786
S ₃₁	4.084	303	0.165	0.256	1.466	0.771
S ₃₂	4.090	303	0.012	0.018	1.088	0.752
S ₃₃	4.115	301	0.073	0.034	0.944	0.776
S ₃₄	4.123	301	0.053	0.425	1.391	0.556
S ₃₅	4.148	299	0.091	-0.348	2.671	0.695
S ₃₆	4.191	296	0.015	0.056	0.431	0.817
S ₃₇	4.207	295	0.067	0.010	0.672	0.720
S ₃₈	4.209	295	0.017	-0.012	1.763	0.448
S ₃₉	4.229	293	0.014	0.639	5.816	0.599
S ₄₀	4.232	293	0.009	0.166	1.112	0.516

		PBDB	-T-2F/IT-4F	/NDIN		
Excited	E/eV	λ/nm	f	$\Delta q/e$	D index	Sr index
states						
S ₁	2.223	558	2.155	0.007	0.253	0.754
S_2	2.438	508	0.071	0.893	3.076	0.306
S_3	2.602	476	0.785	0.058	0.641	0.740
S_4	2.698	459	0.083	-0.099	3.842	0.347
S_5	2.757	450	0.204	0.024	0.921	0.735
S_6	3.009	412	0.024	0.071	6.077	0.198
S_7	3.082	402	0.040	0.529	2.168	0.621
S_8	3.100	400	0.027	0.111	2.016	0.709
S_9	3.263	380	0.077	0.649	2.440	0.588
S_{10}	3.283	378	0.056	0.244	0.918	0.689
S_{11}	3.304	375	0.064	0.012	1.552	0.692
S_{12}	3.326	373	0.004	0.229	0.886	0.621
S ₁₃	3.407	364	0.010	0.681	7.108	0.460
S_{14}	3.420	363	0.035	0.250	3.805	0.643
S_{15}	3.487	356	0.119	0.004	1.786	0.714
S_{16}	3.498	354	0.013	0.108	1.840	0.773
\mathbf{S}_{17}	3.536	351	0.008	0.096	0.750	0.679
\mathbf{S}_{18}	3.553	349	0.112	0.071	2.545	0.596
S ₁₉	3.577	347	0.032	-0.144	0.846	0.631
S_{20}	3.589	345	0.047	-0.039	0.605	0.695
S_{21}	3.600	344	0.084	-0.011	0.639	0.675
S_{22}	3.613	343	0.029	0.053	2.460	0.509
S ₂₃	3.619	343	0.029	-0.047	0.853	0.610
S ₂₄	3.628	342	0.001	0.001	0.700	0.524
S ₂₅	3.628	342	0.015	0.010	0.765	0.580
S ₂₆	3.639	341	0.092	0.034	2.471	0.666
\mathbf{S}_{27}	3.645	340	0.043	0.162	2.708	0.494

S ₂₈	3.705	335	0.008	0.157	1.637	0.414
S ₂₉	3.710	334	0.035	0.024	1.276	0.292
S ₃₀	3.716	334	0.072	0.188	0.744	0.655
S ₃₁	3.749	331	0.026	0.357	1.869	0.580
S ₃₂	3.849	322	0.021	-0.096	3.532	0.700
S ₃₃	3.863	321	0.150	0.030	1.689	0.750
S ₃₄	3.878	320	0.024	0.290	1.750	0.725
S ₃₅	3.898	318	0.012	0.356	3.927	0.681
S ₃₆	3.924	316	0.049	0.010	1.390	0.508
S ₃₇	3.942	315	0.042	0.162	1.194	0.716
S ₃₈	3.957	313	0.023	0.193	1.268	0.666
S ₃₉	3.963	313	0.005	0.017	0.643	0.658
S_{40}	3.974	312	0.023	0.127	3.349	0.563

PBDB-T-2F/IT-4F/E3							
Excited	<i>E</i> /eV	λ/nm	f	$\Delta q/e$	D index	Sr index	
states							
S ₁	2.211	561	2.113	0.015	0.382	0.755	
S_2	2.466	503	0.080	0.895	3.116	0.296	
S_3	2.580	481	0.556	-0.011	1.710	0.601	
S_4	2.644	469	0.264	-0.076	2.591	0.543	
S_5	2.771	447	0.302	0.071	0.619	0.757	
S_6	2.980	416	0.003	0.035	6.388	0.109	
S_7	3.074	403	0.024	0.237	1.746	0.690	
S_8	3.100	400	0.028	0.496	2.145	0.644	
S_9	3.265	380	0.097	0.610	2.117	0.579	
S_{10}	3.272	379	0.063	0.260	1.203	0.682	
S_{11}	3.298	376	0.060	0.016	2.105	0.672	
S ₁₂	3.323	373	0.004	0.210	1.064	0.613	
S ₁₃	3.411	343	0.027	0.435	3.990	0.611	
S_{14}	3.425	362	0.017	0.344	4.337	0.664	
S ₁₅	3.484	356	0.111	0.074	2.346	0.681	
S ₁₆	3.492	355	0.033	0.165	1.931	0.756	
\mathbf{S}_{17}	3.512	353	0.037	0.088	3.444	0.548	
\mathbf{S}_{18}	3.550	349	0.043	0.047	0.601	0.702	
S ₁₉	3.576	347	0.004	-0.206	1.038	0.581	
S_{20}	3.589	345	0.044	-0.017	1.806	0.698	
S_{21}	3.600	344	0.162	0.043	2.041	0.648	
S_{22}	3.613	343	0.050	0.165	2.710	0.622	
S ₂₃	3.626	342	0.010	0.012	0.859	0.564	
S ₂₄	3.628	342	0.025	-0.016	0.691	0.569	
S ₂₅	3.629	342	0.001	0.001	0.712	0.521	
S ₂₆	3.650	340	0.101	0.008	0.609	0.805	
S ₂₇	3.697	335	0.073	0.031	4.471	0.475	

S_{28}	3.724	333	0.077	0.144	1.914	0.620
S ₂₉	3.735	332	0.010	0.567	3.283	0.489
S ₃₀	3.767	329	0.064	0.024	4.310	0.662
S ₃₁	3.856	322	0.140	0.317	2.347	0.733
S ₃₂	3.882	319	0.024	0.371	3.096	0.709
S ₃₃	3.896	318	0.027	0.294	2.353	0.731
S ₃₄	3.919	316	0.033	0.008	0.763	0.531
S ₃₅	3.948	314	0.031	0.099	1.357	0.720
S ₃₆	3.958	313	0.002	0.001	1.163	0.505
S ₃₇	3.982	311	0.025	0.024	1.386	0.688
S ₃₈	3.984	311	0.027	0.055	1.996	0.658
S ₃₉	4.002	310	0.041	0.088	0.898	0.684
S_{40}	4.012	309	0.115	0.235	0.889	0.697

PBDB-T-2F/IT-4F/E4							
Excited	E/eV	λ/nm	f	$\Delta q/e$	D index	Sr index	
states							
S_1	2.208	562	2.075	0.015	0.445	0.754	
S_2	2.443	508	0.093	0.902	3.112	0.296	
S_3	2.593	478	0.744	0.024	0.944	0.703	
S_4	2.670	464	0.118	-0.092	3.599	0.396	
S_5	2.770	448	0.274	0.064	0.687	0.751	
S ₆	3.007	412	0.005	0.039	6.369	0.125	
S_7	3.062	405	0.048	0.608	2.280	0.603	
S_8	3.098	400	0.008	0.137	2.306	0.705	
S_9	3.244	382	0.110	0.736	2.748	0.511	
\mathbf{S}_{10}	3.270	379	0.051	0.123	1.217	0.716	
S_{11}	3.300	376	0.068	0.056	0.987	0.709	
S ₁₂	3.311	374	0.009	0.134	1.229	0.640	
S ₁₃	3.418	363	0.045	0.807	7.858	0.432	
S_{14}	3.449	360	0.049	-0.106	0.663	0.752	
S ₁₅	3.488	355	0.014	0.168	1.822	0.779	
S ₁₆	3.523	352	0.030	0.232	2.576	0.647	
S ₁₇	3.536	351	0.093	0.184	3.034	0.616	
S_{18}	3.568	348	0.012	-0.135	0.906	0.675	
S ₁₉	3.589	345	0.004	0.001	0.660	0.721	
S ₂₀	3.596	345	0.136	-0.047	0.854	0.734	
S ₂₁	3.616	343	0.028	0.129	2.070	0.590	
S ₂₂	3.622	342	0.024	0.013	0.741	0.593	
S ₂₃	3.624	342	0.075	0.004	0.625	0.643	
S ₂₄	3.629	342	0.002	0.000	0.706	0.498	
S_{25}	3.651	340	0.075	0.018	0.863	0.793	
S ₂₆	3.705	335	0.050	0.565	2.775	0.614	
\mathbf{S}_{27}	3.716	334	0.170	0.167	0.994	0.729	

S_{28}	3.786	327	0.021	0.006	5.921	0.505
S ₂₉	3.851	322	0.151	0.342	2.756	0.734
S ₃₀	3.880	320	0.015	0.405	3.575	0.687
S ₃₁	3.899	318	0.045	0.106	1.126	0.625
S ₃₂	3.910	317	0.055	0.199	0.629	0.690
S ₃₃	3.959	313	0.001	0.000	0.957	0.499
S ₃₄	3.974	312	0.024	-0.042	1.409	0.739
S ₃₅	3.981	311	0.049	0.204	0.586	0.692
S ₃₆	3.987	311	0.041	0.118	2.761	0.631
S ₃₇	3.993	310	0.031	0.012	1.489	0.721
S ₃₈	4.011	309	0.154	0.016	1.463	0.618
S ₃₉	4.031	308	0.013	0.172	1.048	0.691
S ₄₀	4.047	306	0.003	0.615	3.281	0.467