Supporting Information for

Guest Removal from Ring-Banded Guanidinium Organosulfonate Hydrogen-Bonded Frameworks

Rochelle B. Spencer,^a Anna Yusov,^a Alexandra M. Dillon,^a Akash Tiwari,^a Oriol Arteaga,^b Sophia Sburlati,^a St. John Whittaker,^a Wantong Wu,^a Zoey Chen,^a Alexander G. Shtukenberg,^a Michael D. Ward,^{*a} Bart Kahr^{*a} and Stephanie S. Lee^{*a}

^aMolecular Design Institute, Department of Chemistry, New York University, New York, NY 10003, USA ^bDepartment of Applied Physics, University of Barcelona, 08028 Barcelona, Spain

*mdw3@nyu.edu, bk66@nyu.edu, stephlee@nyu.edu

Video S1. Brightfield video of a (G)₂(1,5-NDS) \supseteq EtOH single crystal undergoing a transition upon heating at 130°C.

Video S2. Frame-by-frame optical micrographs of the recrystallization process upon heating a $(G)_2(1,5-NDS) \supseteq$ EtOH banded spherulite film between crossed polarizers. Time-lapse videos of optical micrographs were created in Fiji and frames were stabilized with the StackReg macro plugin.

Figure S1. Optical micrographs of (G)₂(1,5-NDS) films grown from ethanol solution between crossed polarizers at various solution concentrations and substrate temperatures. Scale bar = $50 \ \mu$ m.

Figure S2. Color map correlating solution concentration and substrate temperature with $(G)_2(1,5-NDS)$ film morphologies: (a) coffee rings of small crystalline aggregates (yellow), (b) spherulites (red), (c) needle-like crystals (green), and (d) large crystalline aggregates (blue). Red data points represent banded spherulites.

Figure S3. (a) 2-D XRD pattern of $(G)_2(1,5-NDS) \supset EtOH$ bulk powder. (b) 1-D line scans extracted from the 2-D diffraction patterns for $(G)_2(1,5-NDS) \supset EtOH$ twisted crystals and $(G)_2(1,5-NDS) \supset EtOH$ bulk powder loaded into Kapton capillary tubes. The simulated powder XRD pattern of experimentally determined $(G)_2(1,5-NDS) \supset EtOH$ are provided for comparison.

Figure S4. Absorbance and emission spectra at different excitation wavelengths for $(G)_2(1,5-NDS)$ dissolved in ethanol.

Figure S5. (a, b) Optical micrographs of a $(G)_2(1,5-NDS) \supseteq$ EtOH single crystal between crossed polarizers before and after ethanol guest removal at 130°C, respectively. The white arrow highlights a thin single crystal exhibiting few domains that transformed with loss of retardance. The red arrow indicates a thick single crystal exhibiting multiple domains that decomposed, became dark because of strong scattering, and lost all phase information upon guest removal.

Compound name	(G)₂(1,5-NDS)⊃EtOH	(G) ₂ (1,5-NDS)	
Lab code	23mdw12ay	23mdw35ay	
CCDC no.	2419508	-	
Formula by X-ray	$C_{14}H_{24}N_6O_7S_2$	$C_{12}H_{18}N_6O_6S_2$	
Formula weight	452.51	406.44	
Crystal habit	colorless plate	cloudy colorless prism	
Crystal size (mm)	0.430 x 0.370 x 0.110	0.886 x 0.471 x 0.190	
Crystal system	triclinic	monoclinic	
Space group (no.)	PĪ	<i>P</i> 2 ₁ /c	
a (Å)	7.2940(3)	11.359(5)	
b (Å)	7.2975(3)	9.285(4)	
c (Å)	11.5957(5)	9.048(4)	
α (°)	100.0921(15)	90	
β (°)	95.3125(14)	101.453(12)	
γ (°)	118.9930(13)	90	
V (Å ³)	520.096	935.276	
Ζ	1	2	
<i>D</i> _c (g cm ⁻³)	1.445	1.443	
<i>F</i> (000)	238.0	424.0	
μ (mm ⁻¹)	0.305	0.326	
Total reflections	15215	2443	
Unique reflections	2576	640	
R _{int}	0.0327	0.0953	
$R_1 [I > 2\sigma(I)]$	0.0325	0.1106	
wR ₂ (all data)	0.0946	0.2229	
GOF (all data)	1.085	1.386	

Table S1. Detailed crystallographic data for $(G)_2(1,5-NDS) \supseteq$ EtOH and $(G)_2(1,5-NDS)$ collected at 100 K

Figure S6. (a) 2-D XRD pattern of guest-free (G)₂(1,5-NDS) bulk powder. (b) 1-D line scans extracted from the 2-D diffraction patterns of guest-free (G)₂(1,5-NDS) straight crystals and guest-free (G)₂(1,5-NDS) bulk powder loaded into Kapton capillary tubes. The simulated powder XRD patterns of experimentally determined guest-free (G)₂(1,5-NDS) and (G)₂(1,5-NDS) \supset EtOH are provided for comparison.

Figure S7. Comparison of 1-D line scans extracted from the 2-D diffraction patterns of $(G)_2(1,5-NDS) \supset$ EtOH bulk powder and guest-free $(G)_2(1,5-NDS)$ bulk powder with the simulated powder XRD pattern of experimentally determined HOF-GS-10 "unknown solvate".

Compound name	(G) ₂ (1,5-NDS)⊃EtOH	(G) ₂ (1,5-NDS)	HOF-GS-10
CCDC no.	2419508	-	1473368
Formula by X-ray	$C_{14}H_{24}N_6O_7S_2$	$C_{12}H_{18}N_6O_6S_2$	$C_{12}H_{18}N_6O_6S_2$
Formula weight	452.51	406.44	406.44
Crystal habit	colorless plate	cloudy colorless prism	colorless rod
Crystal size (mm)	0.430 x 0.370 x 0.110	0.886 x 0.471 x 0.190	0.13 x 0.11 x 0.10
Crystal system	triclinic	monoclinic	triclinic
Space group (no.)	PĪ	<i>P</i> 2 ₁ /c	PĪ
a (Å)	7.2940(3)	11.359(5)	7.2631(10)
b (Å)	7.2975(3)	9.285(4)	7.3084(11)
c (Å)	11.5957(5)	9.048(4)	11.6934(17)
α (°)	100.0921(15)	90	74.902(4)
β (°)	95.3125(14)	101.453(12)	84.809(4)
γ (°)	118.9930(13)	90	60.567(4)
V (Å ³)	520.096	935.276	521.41(13)
Ζ	1	2	1
<i>D</i> _c (g cm ⁻³)	1.445	1.443	1.294

Table S2. Comparison of crystallographic data for $(G)_2(1,5-NDS) \supseteq$ EtOH, $(G)_2(1,5-NDS)$ and HOF-GS-10.

Figure S8. Molecular packing highlighting the distance between adjacent bilayers in (a) $(G)_2(1,5-NDS) \supseteq$ EtOH and (b) $(G)_2(1,5-NDS)$ as 3.074 Å and 2.772 Å, respectively, as measured by the distance between a plane constructed through the closest oxygen atoms in each bilayer. Hydrogen atoms are hidden for clarity.

Figure S9. (a, b) Hydrogen-bonding interactions in GS sheets of $(G)_2(1,5-NDS)$ ⊃EtOH and $(G)_2(1,5-NDS)$. Unlike $(G)_2(1,5-NDS) \supseteq$ EtOH, $(G)_2(1,5-NDS)$ exhibits a distorted quasi-hexagonal GS sheet. In $(G)_2(1,5-NDS)$, G cations and S anions retain the 6 strong hydrogen bonds (d(N-O) = 2.869, 2.889, 2.929, 2.952, 2.968, 3.038 Å), albeit the magnitudes of these hydrogen bonding interactions differ slightly in $(G)_2(1,5-NDS) \supseteq$ EtOH (d(N-O) = 2.900, 2.912, 2.927, 2.927, 2.937, 2.948 Å). One pair of G protons on adjacent nitrogen atoms is hydrogen-bonded to a single S oxygen atom. While $(G)_2(1,5-NDS) \supseteq$ EtOH has each G cation bound to only 3 S anions, each G cation is bound to 4 S anions in $(G)_2(1,5-NDS)$. Hydrogen bonds in $(G)_2(1,5-NDS)$ are slightly longer on average (2.941 vs. 2.925 Å) than in the $(G)_2(1,5-NDS) \supseteq$ EtOH structure, and their geometry appears to be much less favorable: N-H--O angles in $(G)_2(1,5-NDS)$ are 167.25° , 145.57° , 147.47° , 145.70° , 156.86° , and 161.66° , compared to N-H--O angles of 163.11° , 165.15° , 174.47° , 160.58° , 159.45° , and 170.42° in the $(G)_2(1,5-NDS) \supseteq$ EtOH structure.

Figure S10. Visualization of the calculated void spaces (yellow cavities) in (a) $(G)_2(1,5-NDS) \supset EtOH$ with ethanol computationally removed compared to (b) $(G)_2(1,5-NDS)$. The voids are 19.6% and 9.7% of the unit cell volume, affording void volumes of 101.95 Å³ and 90.82 Å³, respectively (grid spacing = 0.3 Å, probe radius = 1.2 Å).

Figure S11. Linear retardance (|LR|) map and angle-dependent linear retardance (LR_{angle}) map measured in degrees counterclockwise from the horizontal direction (a) before and (b) after guest removal from (G)₂(1,5-NDS) \supseteq EtOH banded spherulite films. $\lambda = 455$ nm.

Figure S12. (a) SEM cross-section of a guest-free (G)₂(1,5-NDS) film, (b) cross-section of the film with pores shaded in red, and (c) tabular summary of measurements obtained from pore analysis conducted using Fiji software.