Supplementary Information:

Pairing Ru-doped NiCo-layered double hydroxides and selenide derivatives as self-supporting electrocatalyst for alkaline overall

water splitting

Yuxia Wang ^a, Juan Xiao ^a, Tingting Huang ^a, Ying Wang^a, Hui Ding ^a, Qimeng Zhu^a, Guancheng Xu ^{*a}, Li Zhang ^{*a,b}

a State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinijana. PR China

b College of Chemical Engineering, Xinjiang University, Urumqi, 830017, Xinjiang, PR China

*Corresponding authors. E-mail: xuguanchengxju@163.com; zhangli420@xju.edu.cn

Chemicals

All chemical reagents are utilized without purification. Nickel nitrate hexa hydrate (Ni(NO₃)₂·6H₂O, AR, 98%, Tianjin Yongsheng Fine Chemical Co., Ltd.), Cobalt nitrate hexahydrate(Co(NO₃)₂·6H₂O, AR, 99.9%, Shanghai Aladdin Bioche mical Technology Co., Ltd.), Ruthenium chloride hydrate(RuCl₃.xH₂O, 99%, Ru 3 7-40%,Beijing Yinnokai Technology Co., Ltd), Selenium powder (Se, AR, 99.9%, Shanghai Aladdin Biochemical Technology Co., Ltd.), Potassium hydroxide (KOH, AR, 85%, Tianjin Zhiyuan Chemical Reagent Co., Ltd.), commercial Pt-C (20 wt%, JM, Shanghai Hesen Electric Co., Ltd.), RuO₂ (Shanghai Hesen Electric Co., Lt d.) and NF (SHENZHEN KEJING STAR TECHNOLOGY CO., LTD. Thickness:1.6 mm).

Materials characterization.

The morphology and detailed microstructures of the final products were characterized by scanning electron microscopy (SEM) with Hitachi S-4800 scanning electron microscope and transmission electron microscopy (TEM) with FEI F30 transmission electron microscope. X-ray diffraction (XRD) patterns were recorded on a Bruker D8 advance X-ray diffractometer with Cu K α radiation source (λ = 1.54178 Å). X-ray photoelectron spectroscopy (XPS) was performed using Thermo Fisher Scientific Escalab 250 Xi with monochromatic Al K α at 15 kW. The Fourier transform infrared (FTIR) spectrum was obtained using a Bruker Vertex 70 spectrophotometer within the range of 4000-400 cm⁻¹.

Electrochemical measurements

All the electrochemical tests were measured in 1.0 M KOH aqueous electrolyte with the CHI 660E electrochemical workstation. HER and OER were carried out in the three-electrode system and the two-electrode system was used to test overall water splitting performance. In this work, the graphite electrode was used as counter electrode and Hg/HgO was used as reference electrode. The area of the working electrode immersed into the electrolyte was 0.5 cm×0.5 cm.

The preparation methods of Pt-C/NF and RuO₂/NF are as follows: 0.466 mg Pt-C and 2.36 mg RuO₂ powder were dispersed in 500 μ L mixed solution (V_{ethanol}:V_{nafion} = 490:10), respectively. Then mixed solution is ultrasonically treat ed for 1 h to form a uniform ink solution. All of the ink solution were coate don a piece of nickel foam with the area of 0.5 cm×0.5 cm, respectively, and then dried at 60 °C for 12 h in vacuum.

The working electrode was scanned by Cyclic Voltammetry (CV) until the signals were stabilized and then the data were collected. The Linear scanning voltammetry (LSV) was carried out at a scan rate of 5 mV s ⁻¹ in 1.0 M KO H and was corrected with 85% iR compensation. The potentials were calibrat ed to a reversible hydrogen electrode (RHE) according to the equation: E (RHE) = E (Hg/HgO) + 0.098 + 0.059 pH - 85% iR (pH = 13.8, correspondin g 1.0 M KOH).

To assess the reaction kinetics, Tafel slopes were extracted from the Taf el equation: $\eta = b \log j + a b$ is the Tafel slope and j denotes the current density. The double layer capacitance (C_{dl}) was determined by CV curves in t he non-faradic potential region with different scan rates (60, 70, 80, 90, and 100 mV s⁻¹).The electrochemical impedance spectroscopy (EIS) measurements were conducted over a frequency range of 0.01-10⁵ Hz with a 5 mV AC pote ntial perturbation. For overall water splitting, a two-electrode configuration w as adopted, andthe electrolyte of 1.0 M KOH was utilized. The stability was

evaluated via CV for 5000 cycles with a scan rate of 100 mV s⁻¹ and the Chr onopotentiometry v-t methods.

The Faraday efficiencies of the H-NMO/CMO/CF-450 during the HER/OER were calculated based on the ratio of the volume of actual (V_{actual}) H_2/O_2 evo lvedto the theoretical one ($V_{theoretical}$):

Faraday efficiency =
$$\frac{V_{actual}}{V_{theoretical}} \times 100\%$$

The actual volumes of generated H_2/O_2 gas were gathered using the drai nage method. The theoretical volume can be calculated by the formula:

$$V_{\text{t heoretical}} = \frac{I \cdot t \cdot V_m}{z \cdot F}$$

where I is current (A), t is time (s), V_m is molar volume of H_2/O_2 gas (23.6 L mol⁻¹, 293 K, 103.4 kPa in Urumqi, Xinjiang), F is the Faraday constant (96485 C mol⁻¹), *z* is electron number transferred per molecule (z is 2 and 4 for HER and OER, respectively).

Fig. S1 SEM images of NiCo LDH/NF.

Fig. S2 SEM images of (a) Ru-NiCo LDH/NF-3, (b) Ru-NiCo LDH/NF-4, (c) Ru-NiCo LDH/NF-5, (d) Ru-NiSe₂/CoSe/NF-3, (e) Ru-NiSe₂/CoSe-4, (f) Ru-NiSe₂/CoSe/NF-5.

Fig. S3 SEM images of NiSe₂/CoSe/NF.

Fig. S4 XPS full spectrum of Ru-NiCo LDH/NF-4 and Ru-NiSe₂/CoSe/NF-4.

Fig. S5 XPS spectra of (a) XPS full spectrum, (b) Ru 3p, (c) Ni 2p and of Co 2p Ru-NiCo LDH/NF-4 and NiCo LDH/NF.

Fig. S6 XPS full spectrum of Ru-NiSe₂/CoSe/NF-4 and Ru-NiSe₂/CoSe/NF.

Fig. S7 XPS spectra of (a) XPS full spectrum, (b) Ni 2p, (c) Co 2p (d)Se 3d of Ru-NiSe₂/CoSe/NF-4 and NiSe₂/CoSe /NF.

Fig. S8 Operando Nyquist of NiCo LDH/NF at various overpotentials in 1.0 M KOH.

Fig. S9 CV scans of (a) NiCo LDH/NF, (b) Ru-NiCo LDH/NF-3, (c) Ru-NiCo LDH/NF-4, (c) Ru-NiCo LDH/NF-5 and Ru-NiSe₂/CoSe/NF-4 at various scan rate for HER.

Fig. S10 ECSA normalized LSV of Ru-NiCo LDH/NF-3, Ru-NiCo LDH/NF-4, Ru-NiCo LDH/NF-5 and NiCo LDH/NF for HER.

Fig. S11 (a,b) SEM after HER stability test of Ru-NiCo LDH/NF-4.

Fig. S12 XPS spectra of (a) XPS full spectrum, (b) Ru 3p, (c) Ni 2p and (d) Co 2p of Ru-NiCo LDH/NF-4 after HER stability test.

Fig. S13 Operando Nyquist of NiSe₂/CoSe/NF at various overpotentials in 1.0 M KOH.

Fig. S14 CV scans of (a) NiSe₂/CoSe/NF, (b) Ru-NiSe₂/CoSe/NF-3, (c) Ru-NiSe₂/CoSe/NF-4, (d) Ru-NiSe₂/CoSe/NF-5 and (e) Ru-NiCo LDH/NF-4 at various scan rate for OER.

Fig. S15 ECSA normalized LSV of Ru-NiCo LDH/NF-4, Ru-NiCo LDH/NF-3, Ru-NiCo LDH/NF-5, NiCo LDH/NF for HER.

Fig. S16 (a,b) SEM after OER stability test of Ru-NiSe₂/CoSe/NF-4.

Fig. S17 XPS full spectrum after OER stability test of Ru-NiSe₂/CoSe/NF-4.

Fig. S18 XPS spectra of (a) Ru 2p, (b) Ni 2p, (c) Co 2p and (d) Se 3d of Ru-NiSe₂/CoSe/NF after OER stability test.

Fig. S19 chronoamperometry test of Ru-NiCo LDH/NF-4 || Ru-NiSe2/CoSe/NF-4 in 1.0 M KOH.

Fig. S20. (a) Photographs of the water electrolysis; (b) experimental and theoretical volumes of H_2 and O_2 gases during water splitting at a current density of 500 mA·cm⁻² for 15 min and Faraday efficiency of the Ru-NiCo LDH/NF-4 and Ru-NiSe₂/CoSe/NF-4

Catalysts	η(mV)@J(mA⋅cm ⁻²)	Stability(h)@J(mA·cm ⁻²)	Reference
Ru-NiCo LDH/N F-4	45@10	300@10	This work
H-CoS _x @NiFe L	95@10	100@	1
DH/NF			
NiFe LDH-NS@	115@10	10@10	2
DG10			
Cu ₂ O_S_Co_CoF	280@100	24@200	3
e			
Mo-NiS _x @NiFe	61.3@10	80@200	4
LDH/NF			
Ni _x Fe _y Mo _z LDH	86@10	50@10	5
Ni ₂ Mo ₃ N/NF	59.7@10	200@15	6
NiFeV-LDHs/NF	125@10	15@30	7
Ru doped Ni(O	135@10	15@10	8
H) ₂ /TM-0.3			
Ru-CoP-2.5-NAS	52@10	50@100	9
Co ₉ S ₈ @NiCo LD	168@10	12@10	10
H/NF			
Fe _{88.46} P _{9.42}	436@10	8.6 (d) @10	11
2Mo/1Co	14@10	197 h@10	12
NF/FeNiP-CoP@	254@10	50 h@-0.254V	13
NC			

Table S1. HER activities of the recently reported catalysts in literature (1.0 M KOH).

Catalysts	η(mV)@J(mA·cm⁻²)	Stability(h)@J(mA·cm ⁻²)	Reference
Ru-NiSe ₂ /CoSe/NF- 4	238@10	300@10	This work
CuNi@NiSe	293@10	280@250	14
FeSe ₂ /NF	245@10	18@10	15
Ni(CN) ₂ /NiSe ₂	270@10	10@10	16
Ni-Mo-Se/NF-AO	244@10	30@10	17
Ni _{0.85} Se-O/CN	240@10	48@	18
Fe-NiSe ₂ -25	250 @10	15@10	19
S-Ni ₃ Se ₄ -2	275 @10	100@50	20
NiFe@NiFe	241@10	100@10	21
FeOOH(Se)/IF	287@10	100@10	22
Ni–Fe–Se cages	240@10	22@5	23
$Fe_{88.46}P_{9.42}$	527@10	42@10	11
NF/FeNiP- CoP@NC	78@10	50@1.347V	13

Table S2. OER activities of the recently reported catalysts in literature (1.0 M KOH).

Table S3. Electrolytic water splitting activities of the recently reported catalysts in literature (1.0 M KOH).

Catalysts	η(V)@J (mA⋅cm ⁻ 2)	Stability (h)@J (mA·cm ⁻	Reference
	/	1	
Ru-NiCo DH/NF-4 Ru-	4 50 0 40	300@10	This work
NiSe ₂ /CoSe /NF-4	1.53@10		
Co _{0.9} Fe _{0.1} -Se / NF	1 55@10	36@10	24
Co _{0.9} Fe _{0.1} -Se / NF	1.55@10		
P-NiSe ₂ @N-CNTs/NC	1 600@10	28@50	25
P-NiSe ₂ @N-CNTs/NC	1.009@10		
(Ni,Co)0.85Se	1 (5 @ 10	50,000	26
NSAs (Ni,Co)0.85Se	NSAs (Ni,Co)0.85Se		_0

NSAs			
Fe@Ni3Se4/NF	1 (4@50	33@50	27
Fe@Ni3Se4/NF	1.64@50		
NiSe-Ni _{0.85} /CP NiSe-	1 (2@10	50@10	28
Ni _{0.85} /CP	1.62@10		
NF/FeNiP-CoP@NC	1 479@10	50h	13
NF/FeNiP-CoP@NC	1.478@10		

Reference:

- 1. Y. J. Lee and S.-K. Park, Small, 2022, 18, 2200586.
- 2. Y. Jia, L. Zhang, G. Gao, H. Chen, B. Wang, J. Zhou, M. T. Soo, M. Hong, X. Yan, G. Qian, J. Zou, A. Du and X. Yao, *Adv.Mater.*, 2017, **29**, 1700017.
- 3. V. V. Burungale, H. Bae, M. A. Gaikwad, P. Mane, J. Heo, C. Seong, S.-H. Kang, S.-W. Ryu and J.-S. Ha, *Chem. Eng. J.*, 2024, **486**, 150175.
- 4. Y. Li, H. Guo, Y. Zhang, H. Zhang, J. Zhao and R. Song, J. Mater. Chem. A, 2022, 10, 18989-18999.
- A. I. Inamdar, H. S. Chavan, J. H. Seok, C. H. Lee, G. Shin, S. Park, S. Yeon, S. Cho, Y. Park, N. K. Shrestha,
 S. U. Lee, H. Kim and H. Im, *J. Mater. Chem. A*, 2022, **10**, 20497-20508.
- J. Y. Zhao, Z. X. Lou, L. Y. Xue, Y. Ding, X. Li, X. Wu, Y. Liu, H. Y. Yuan, H. F. Wang, P. F. Liu, S. Dai and H. G. Yang, *J. Mater. Chem. A*, 2023, **11**, 7256-7263.
- 7. K. N. Dinh, P. Zheng, Z. Dai, Y. Zhang, R. Dangol, Y. Zheng, B. Li, Y. Zong and Q. Yan, *Small*, 2018, **14**, 1703257.
- Y. Wang, J. Wang, T. Xie, Q. Zhu, D. Zeng, R. Li, X. Zhang and S. Liu, *Appl. Surf. Sci.*, 2019, 485, 506-512.
- 9. Y. Liu, S. Xu, X. Zheng, Y. Lu, D. Li and D. Jiang, J. Colloid Interface Sci., 2022, 625, 457-465.
- 10. J. Yan, L. Chen and X. Liang, Sci. Bull., 2019, 64, 158-165.
- 11. T. Zhang, X. Ren, S. Mo, W. Cao, C. Zhou, F. Ma, R. Chen, C. Zeng, L. Shi, T. Liu, H. Zhang and H. Ni, *J. Mater Sci. Technol.*, 2024, **199**, 66-74.
- 12. T. Zhang, X. Ren, W. Cao, H. Zou, X. Jiang, F. Ma, R. Chen, H. Qiao, Y. Zhang, H. Liu, H. Zhang and H. Ni, J. Colloid Interface Sci., 2025, 679, 569-577.
- 13. Q. Zhang, X. Zeng, Z. Zhang, C. Jin, Y. Cui and Y. Gao, J. Colloid Interface Sci., 2024, 675, 357-368.
- 14. D. Cao, J. Shao, Y. Cui, L. Zhang and D. Cheng, Small, 2023, 19, 2301613.
- 15. C. Panda, P. W. Menezes, C. Walter, S. Yao, M. E. Miehlich, V. Gutkin, K. Meyer and M. Driess, *Angew. Chem. Int. Ed.*, 2017, **56**, 10506-10510.
- 16. J. Nai, X. Xu, Q. Xie, G. Lu, Y. Wang, D. Luan, X. Tao and X. W. Lou, Adv. Mater, 2021, 34.
- 17. K. Guo, H. Li, J. Huang, Y. Wang, Y. Peng, S. Lu and C. Xu, J. Energy Chem., 2021, 63, 651-658.
- C. Zhang, W. Xu, S. Li, X. Wang, Z. Guan, M. Zhang, J. Wu, X. Ma, M. Wu and Y. Qi, *Chem. Eng. J.*, 2023, **454**, 140291.
- 19. C. Xuan, Q. Xu, L. Han and B. Hou, Chem. Eng. J., 2023, 464.
- 20. K. Wan, J. Luo, X. Zhang, P. Subramanian and J. Fransaer, *Journal of Energy Chemistry*, 2021, **62**, 198-203.
- 21. J.-H. Park, H. J. Kwon, D. Y. Lee and S.-J. Suh, 2024, 20, 2400046.
- 22. S. Niu, W.-J. Jiang, Z. Wei, T. Tang, J. Ma, J.-S. Hu and L.-J. Wan, *J. Am. Chem. Soc.*, 2019, **141**, 7005-7013.
- 23. J. Nai, Y. Lu, L. Yu, X. Wang and X. W. D. Lou, Adv Mater., 2017, 29.
- 24. H. Ren, L. Yu, L. Yang, Z.-H. Huang, F. Kang and R. Lv, J. Energy Chem., 2021, 60, 194-201.
- 25. J. Yu, W.-J. Li, G. Kao, C.-Y. Xu, R. Chen, Q. Liu, J. Liu, H. Zhang and J. Wang, *Energy Chem.*, 2021, **60**, 111-120.
- 26. K. Xiao, L. Zhou, M. Shao and M. Wei, J. Mater. Chem A, 2018, 6, 7585-7591.
- 27. A. Karmakar, A. V. Krishnan, R. Jayan, R. Madhu, M. M. Islam and S. Kundu, *Journal of Materials Chemistry A*, 2023, **11**, 10684-10698.
- 28. Y. Chen, Z. Ren, H. Fu, X. Zhang, G. Tian and H. Fu, Small, 2018, 14, 1800763.