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Table S1 Properties of some bulk Ionic liquid-based electrolytes 

Ionic Liquids (ILs) electrolyte Viscosity 
(mPa.s)

Conductivity 
(mScm-1)

Electrochemical 
stability window 

(V)

Ref.

1-ethyl-3-methylimidazolium 
bis(fluorosulfonyl)imide 

(EMIM)(FSI)

19 17.74 3.5 [1]

Ethyl-3-methylimidazolium bis-
trifluoromethylsulfonylimide 

(EMIM)(TFSI)

34 10.8 4.0 [2]

1-ethyl-3-methyl imidazolium 
tetrafluoroborate (EMIM)(BF4)

32 16.01 4.0 [3]

1-ethyl-3-methylimidazolium 
trifluoromethanesulfonate 

(EMIM)(Otf)

45.7 8.5 4.1 [4]

1-ethyl-3-methylimidazolium 
chloride (EMIM)(Cl)

- 1.85 2.8 [5]

1-ethyl-3-methylimidazolium 
hexafluorophosphate (EMIM)(PF6)

- 1.93 3.2 [6]

1-butyl-3-methylimidazolium 
hexafluorophosphate (BMIM)(PF6)

- 2.1 3.0 [7]

N-propyl-N-methylpyrrolidinium 
bis(trifluoromethanesulfonyl)imide 

(PYR13TFSI)

58.7 4.92 5.0 [8]

1-butyl-1-methylpyrrolidinium 
bis(trifluoromethylsulfonyl)imide

(PYR14TFSI)

85 2.2 >4.8 [9]

N-methyl-N-propylpiperidinium 
bis(trifluoromethylsulfonyl)imide

(Pip13TFSI)

- 10 4.35 [10]



Table S2 Ionic conductivity, cation/ion transference number, electrochemical voltage 
stability window, and thermal stability of ionic liquid-based gel polymer electrolytes.

ILs based electrolytes
Ionic 

conductivity
(S/cm)

Transference
number

(ion/cation)

Electrochemical
stability window 

vs Li/Li+(V)

Thermal
Stability

(°C)

Ref.

PEO based polymer electrolytes

PEO+ LiDFOB+[EMIm][TFSI] ~1.85 x 10-4 - 2.5 to 4.0 - [11]
 PEO + LiTFSI + [BMP][TFSI] 2.5 x 10-5 at 

20 °C
0.41 5.2 340 [12]

PEO+LiTFSI+Pyr13[TFSI] ~ 10-4 to 10-3 
at 30° C

< 0.31 - - [13]

PEO+LiTFSI+[PP13][TFSI] 2.06 x 10-4 at 
RT

0.339 ~4.5 to 4.7 220 [14]

PEO+ LiDFOB+[EMIM][TFSI] 2.98 x 10-4 at 
20 °C

0.39 4.6 310 [15]

PEO+LiTFSI+Pyr13[TFSI] 2.8 x 10-4 at 
20 °C

- ~6 - [16]

PEO+LiTFSI+[EMIM][TFSI] 2.67 x 10-4 0.108
PEO+LiTFSI+[PP13][TFSI] 8.93 x 10-5 at 

40 °C
0.0934 ~ 5.2 for both

- [17]

PEO+LiClO4+[BMIM][PF6] ~10-4 at 40°C - - - [18]
PEO+LiTFSI+[BMIM][TFSI] 1.5 x 10-4 at 

30 °C
0.27 4.0 350 [19]

PEO+LiTFSI+[PYRA1201][TFSI
]

3.4 x 10-3 0.23 ~4.2 -

PEO+LiTFSI+[PYRA12(02)201][T
FSI]

6.2 x 10-3 0.17 - -

[20]

PVdF-HFP based polymer electrolytes

PVdF-HFP+ 
LiTFSI+[BMIM][TFSI]

2 x 10-3 at RT 0.22 - 300 [21]

PVdF-HFP 
+LiTFSI+[EMIM][TFSI]

3.8 x 10-4 at 
25 °C

0.4 4.7 200 [22]

PVdF-HFP 
+LiTFSI+[Py24][TFSI]

2.7 x 10-4 at 
RT

- 5.75 200 [23]

PVdF-HFP +LiTFSI+[B4MePy] 
[TFSI]

2.8 x 10-4 at 
RT

0.7 5.5 at 20 °C - [24]

PVdF-HFP 
+LiTFSI+[PMIM][TFSI]

9.5 x 10-3 at 
30 °C

0.22 - 200 [25]

PVdF-HFP 
+LiClO4+[EMIM][DCA]

6.0 x 10-4 at 
RT

- - 300 [26]



Table S3 IL-based liquid electrolytes in supercapacitor.

ILs electrolyte Electrode
Csp

(Fg-1)

ESW

(V)

Energy 

Density

(WhKg-1)

Ref.

[EMI][TFSI] 3D-organically 
modified carbon

146-178 3.5 - [27]

[EMI][TFSI] N-doped GNs 104 3.6 - [28]
[EMI][TFSI] Carbon nanotubes 

(CNTs)
135 3 - [29]

[EMI][TFSI] Mesoporous 
graphene

- 4 135.6 [30]

[EMI][TFSI] Activated carbon 5.57 - -
[EMI][TFSI] Mesoporous carbon 26.86 - -
[EMI][TFSI] MWCNT 6.35 - -
[EMI][TFSI] RGO 8.18 - -

[31]

[EMI][TFSI] Graphene 332 - 156 [32]
[EMI][TFSI] CNT 201 - 171 [33]
[BMI][BF4] GO-CMK-5 144.4 3.5 - [34]
[BMI][BF4] SWCNT & RGO 222 3.5 - [35]
[BMI][BF4] AC 111 3.5 - [36]
[BMI][BF4] KOH treated 

carbon-xerogel
- 1.1 - [37]

[EMI][BF4] Glucose derived 
AC

158 3 - [38]

[EMI][BF4] CNT spaced 
Graphene aerogels

245.5 1 - [39]

[EMI][BF4] Soybean root 
derived 3D-

hierachical porous 
carbon

276 1 - [40]

[EMI][BF4] N/O-doped rod-like 
microporous 

carbons

- - 89.5 [41]

[EMI][BF4] Mesoporous 
graphene

250 - 85.6 [42]

[BMI][PF6] Reduced graphene 
oxide (RGO)

158 1 - [43]

[BMI][PF6]/DMF MnO2 523.3 3 - [44]
[BMI][PF6] 74 4 -
[BMI] [BF4]

RGO
45 3 -

[45]

[EMI][BF4]-
[EMI]Br

Activated carbon 
fibre cloths

59 1.5 - [46]

[EMI][TFSI]-
[EMI]I

porous carbon 200.6 3.5 175.6 [47]

[PYR][TFSI]+[DI
PEA][ TFSI] AC 120 2 - [48]



[PYR13][TFSI] Carbon Films 102 2.5 - [49]

[Et4N][BF4]
K10/MWCNT/Mn

O2
100 3.5 - [50]

[PYR1,4][DCA] Graphene 
nanosheets (GNs) 330 3.3 - [51]

[BMP][DCA] Graphene 
nanosheets (GNs) 235 3.3 - [52]

[Pyr1,4][C(CN)3] Activated carbon 27.3 - 4.5
[Pip1,4][C(CN)3] Activated carbon 17.7 - 0.9 [53]

[Pyr1,4][B(CN)4] Activated carbon 20 - 6
[Pip1,4][B(CN)4] Activated carbon 14.8 - 1 [54]

[N2224][N(CN)2] Graphene 42 - 55
[N222,Propargyl] 

[N(CN)2]
Graphene 55 - 49 [55]



Table S4 IL-based gel/solid electrolytes in supercapacitor.

IL based GPE electrolytes Electrode Csp (Fg-1) ESW 
(V)

Energy Density 
and Power 

Density

Ref.

EMI TFSI/TMOS/DMDMS AC 177 mFcm-2 0–3 [56]

PVDF-HFP/EMI TFSI Carbon 
electrode

118-115 0–2.5 V 21.9 Whkg-1 , 
6.25 kWkg-1

[57]

PAM/1-vinyl-3-
methylimidazolium

bis(trifluoromethylsulfonyl)
imide

PEDOT/
carbon cloth

157.8 14.22 Whkg-1 [58]

PHEMA-co-
PEGDMA/EMI BF4

AC 193.33 0–3 V 49.55 Whkg-1

and 1.23 kWkg-1
[59]

EMIMBF4/PVDF-HFP Graphite 17.4 3.5 V 56 mWhcm-3 [60]
PEGDA/EMIMTFSI MWCNT 5.3 0–2 V 0.17 mWhcm-3 [61]

Fumed SiO2/EMI TFSI Porous 
carbon

2 V 26 Wcm-3 [62]

PVDF-HFP-[BMI][TFSI]-
NaI

Activated 
carbon

334 1.5 26.1 Wh kg–1 [63]

PVA/PVP-[EMI][HSO4]-
HQ

Activated 
carbon

485 1.2 24.3Wh kg–1 [64]
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