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Table S1 Properties of some bulk Ionic liquid-based electrolytes

. . . . Electrochemical
Ionic Liquids (ILs) electrolyte Viscosity Conductl_\lflty stability window Ref.
(mPa.s) (mScm™) )
1-ethyl-3-methylimidazolium 19 17.74 3.5 [1]
bis(fluorosulfonyl)imide
(EMIM)(FSI)
Ethyl-3-methylimidazolium bis- 34 10.8 4.0 [2]
trifluoromethylsulfonylimide
(EMIM)(TFSI)
1-ethyl-3-methyl imidazolium 32 16.01 4.0 [3]
tetrafluoroborate (EMIM)(BF,)
1-ethyl-3-methylimidazolium 45.7 8.5 4.1 (4]
trifluoromethanesulfonate
(EMIM)(Otf)
1-ethyl-3-methylimidazolium - 1.85 2.8 [5]
chloride (EMIM)(CI)
1-ethyl-3-methylimidazolium - 1.93 3.2 [6]
hexafluorophosphate (EMIM)(PFy)
1-butyl-3-methylimidazolium - 2.1 3.0 [7]
hexafluorophosphate (BMIM)(PFy)
N-propyl-N-methylpyrrolidinium 58.7 4.92 5.0 [8]
bis(trifluoromethanesulfonyl)imide
(PYR;TFSI)
1-butyl-1-methylpyrrolidinium 85 2.2 >4.8 [9]
bis(trifluoromethylsulfonyl)imide
(PYR4TFSI)
N-methyl-N-propylpiperidinium - 10 4.35 [10]

bis(trifluoromethylsulfonyl)imide
(Pip;3TFSI)




Table S2 Ionic conductivity, cation/ion transference number, electrochemical voltage
stability window, and thermal stability of ionic liquid-based gel polymer electrolytes.

Ionic Transference Electrochemical Thermal Ref
ILs based electrolytes conductivity number stability window  Stability )
(S/cm) (ion/cation) vs Li/Li*(V) (°O)
PEO based polymer electrolytes
PEO+ LiDFOB+[EMIm][TFSI]  ~1.85x 10 - 2.5t04.0 - [11]
PEO + LiTFSI + [BMP][TFSI] 2.5x 107 at 0.41 52 340 [12]
20 °C
PEO+LiTFSI+Pyr 5[ TFSI] ~10*to 103 <0.31 - - [13]
at 30° C
PEO+LiTFSI+[PP ;][ TFSI] 2.06 x 10 at 0.339 ~4.5t04.7 220 [14]
RT
PEO+ LiDFOB+[EMIM][TFSI] 2.98 x 10+ at 0.39 4.6 310 [15]
20 °C
PEO+LiTFSI+Pyr13[TFSI] 2.8x 10 at - ~6 - [16]
20 °C
PEO+LiTFSI+[EMIM][TFSI] 2.67x10* 0.108 - [17]
PEO+LiTFSI+[PP ;][ TFSI] 8.93 x 107 at 0.0934 ~ 5.2 for both
40 °C
PEO+LiClO4+[BMIM][PFg] ~104 at 40°C - - - [18]
PEO+LiTFSI+[BMIM][TFSI] 1.5x 10*at 0.27 4.0 350 [19]
30 °C
PEO+LiTFSI+[PYRA |50 ][TFSI 3.4x 103 0.23 ~4.2 - [20]
]
PEO+LiTFSI+[PYRA 1502)201][ T 6.2x 103 0.17 - -
FSI]
PVdF-HFP based polymer electrolytes
PVdF-HFP+ 2x 103 atRT 0.22 - 300 [21]
LiTFSI+[BMIM][TFSI]
PVdF-HFP 3.8x 10*at 0.4 4.7 200 [22]
+LiTFSI+[EMIM][TFSI] 25°C
PVdF-HFP 2.7x 10*at - 5.75 200 [23]
+LiTFSI+[Py,4][ TFSI] RT
PVdF-HFP +LiTFSI+[B4MePy] 2.8 x 10*at 0.7 5.5at20°C - [24]
[TFSI] RT
PVdF-HFP 9.5x 1073 at 0.22 - 200 [25]
+LiTFSI+[PMIM][TFSI] 30 °C
PVdF-HFP 6.0x 104 at - - 300 [26]

+LiClO4+-[EMIM][DCA] RT




Table S3 IL-based liquid electrolytes in supercapacitor.

Energy
Cyp ESW
ILs electrolyte Electrode Density Ref.
(Fg™) V)
(WhKg™)
[EMI][TFSI] 3D-organically 146-178 3.5 - [27]
modified carbon
[EMI][TFSI] N-doped GNs 104 3.6 - [28]
[EMI][TFSI] Carbon nanotubes 135 3 - [29]
(CNTs)
[EMI][TFSI] Mesoporous - 4 135.6 [30]
graphene
[EMI][TFSI] Activated carbon 5.57 - - [31]
[EMI][TFSI] Mesoporous carbon ~ 26.86 - -
[EMI][TFSI] MWCNT 6.35 - -
[EMI][TFSI] RGO 8.18 - -
[EMI][TFSI] Graphene 332 - 156 [32]
[EMI][TFSI] CNT 201 - 171 [33]
[BMI][BF4] GO-CMK-5 144.4 3.5 - [34]
[BMI][BF,] SWCNT & RGO 222 3.5 - [35]
[BMI][BF4] AC 111 3.5 - [36]
[BMI][BF,] KOH treated - 1.1 - [37]
carbon-xerogel
[EMI][BF4] Glucose derived 158 3 - [38]
AC
[EMI][BF4] CNT spaced 245.5 1 - [39]
Graphene aerogels
[EMI][BF4] Soybean root 276 1 - [40]
derived 3D-
hierachical porous
carbon
[EMI][BF4] N/O-doped rod-like - - 89.5 [41]
microporous
carbons
[EMI][BF4] Mesoporous 250 - 85.6 [42]
graphene
[BMI][PF] Reduced graphene 158 1 - [43]
oxide (RGO)
[BMI][PF¢]/DMF MnO, 523.3 3 - [44]
[BMI][PF¢] RGO 74 4 - [45]
[BMI] [BF,] 45 3 -
[EMI][BF4]- Activated carbon 59 1.5 - [46]
[EMI]Br fibre cloths
[EMI][TFSI]- porous carbon 200.6 3.5 175.6 [47]
[EMI]I
[PYR][TFSI]+[DI AC 120 ) i (48]

PEA][ TFSI]



[PYR 5][TFSI]
[EtsN][BF,]

[PYR, 4][DCA]

[BMP][DCA]

[Pyr4][C(CN);3]
[Pip14][C(CN);]
[Pyr14][B(CN)4]
[Pip14][B(CN)4]
[N2224][N(CN),]
[N222,Propargyl]
[N(CN),]

Carbon Films
K10/MWCNT/Mn
0,
Graphene
nanosheets (GNs)
Graphene
nanosheets (GNs)
Activated carbon
Activated carbon
Activated carbon
Activated carbon
Graphene

Graphene

102
100

330

235

27.3
17.7
20
14.8
42

55

2.5
3.5

3.3

3.3

4.5
0.9

55
49

[49]
[50]

[51]
[52]
[53]

[54]

[55]




Table S4

IL-based gel/solid electrolytes in supercapacitor.

IL based GPE electrolytes  Electrode  Csp (Fg!) ESW  Energy Density Ref.
V) and Power
Density
EMI TFSI/TMOS/DMDMS AC 177 mFecm- 0-3 [56]
PVDF-HFP/EMI TFSI Carbon 118-115 025V  21.9 Whkg'!, [57]
electrode 6.25 kWkg!
PAM/1-vinyl-3- PEDOT/ 157.8 14.22 Whkg! [58]
methylimidazolium carbon cloth
bis(trifluoromethylsulfonyl)
imide
PHEMA-co- AC 193.33 0-3V 49.55 Whkg'! [59]
PEGDMA/EMI BF4 and 1.23 kWkg'!
EMIMBF,/PVDF-HFP Graphite 17.4 35V 56 mWhem3 [60]
PEGDA/EMIMTFSI MWCNT 53 02V  0.17 mWhem [61]
Fumed SiO,/EMI TFSI Porous 2V 26 Wem [62]
carbon
PVDF-HFP-[BMI|[TFSI]- Activated 334 1.5 26.1 Whkg! [63]
Nal carbon
PVA/PVP-[EMI|[HSO4]- Activated 485 1.2 24.3Wh kg™! [64]
HQ carbon
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