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Dynamic Metalorganic Aerosol Depositon (dyna-MAD) 
 

 

Figure SM-1. (a) Principle of dynamic metalorganic aerosol deposition technique (dyna-MAD), 

from [1], [2]. The optical monitoring setup consist of a Helium-Neon laser with a wavelength of 

633 nm (E=1.96 eV), a polarizer, photoelastic modulator and analyzer.  
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Electron Energy Loss Analysis of Chemical Composition 

 

                          G = 0%                                           G = 50%                                           G = 100% 

 

Figure SM-2. EELS analysis. Individual EELS spectra are quantified via the Hartree-Slater model 

cross-section method [3]. The two-dimensional maps of relative composition are then profile-

averaged and plotted along the layer growth (horizontal) direction. Shown are relative La content 

(blue) and Sr content (red). Mn and Oxygen were included in the analysis but are omitted here 

for clarity. Overlaid are the corresponding ADF-STEM images.  

The limit of sensitivity in this method is about 2 atomic %; residual Sr signal at or below this value 

results from fit errors of the background model for large energy ranges. Of particular note is the 

GL100 result: the SMO layers are fully graded as desired, while the LMO layers plateau at a finite 

Sr concentration, interpreted in the main manuscript as La0.825Sr0.175MnO3. The layer growth is 

slightly asymmetric, which also becomes apparent in the fit of the XRR data (see Figure 5 in the 

main manuscript). 

 

Atomic Force Microscopy Images 
All samples exhibit a smooth surface morphology typical for a layer-by-layer epitaxial growth., 

The calculated mean-square-roughness varies in the range of RMS=0.3-0.5 nm for all studied 

samples [1].  
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Figure SM-3. Atomic force microscopy images for 0 - 100 % gradient samples. 
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Electrical Resistance Measurements  
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Figure SM-4. Electrical resistivity curves of an LSMO film and of LMO/SMO superlattices with 

various amounts of interface gradient G, as determined from XRR measurements. 
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