Supporting information

A Cu_{0.76}Co_{2.24}O₄/γ-Cu₂(OH)₃Cl Composite Catalyst for Efficient Neutral Nitrate Reduction

Xian Liu^{a,b}, Min Wang^{c*}, Wenhao Yang^c, Zixuan Wei^c, Jian Yang^{a,b*}

^a College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.

^b Jiangsu Collaborative Innovation Center for Advanced Inorganic Function

Composites, Nanjing 211816, China.

^c Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai, 200050, P. R. China.

E-mail: yangjian1976@163.com, wangmin@mail.sic.ac.cn

Figure S1. HRTEM(a-b) and SEM(d)images of CCOC.

Figure S2. XPS survey spectrum of CCOC.

Figure S3. Cu LMM XPS spectrum of CCOC.

Figure S4. Raman spectra of CCOC and γ -Cu₂(OH)₃Cl. The bands at 274 and 352 cm⁻¹ are attributed to bending vibration of Cu²⁺. The bands at 459 cm⁻¹ and 506 cm⁻¹ are ascribed to bending vibration of Cu⁺. The band at 660 cm⁻¹ belongs to Co²⁺/ Co³⁺.

Figure S5. Calibration curve in 0.5 M Na₂SO₄ using ammonium chloride solutions of known concentration as standards. (a) Spectrophotometric UV-vis curves of salicylic acid after incubated for 1 hour and (b) calibration curve used for the estimation of NH₃ concentration. The absorbance at 655 nm was measured by a UV-Vis spectrophotometer, and the fitting curve shows good linear relation of absorbance with NH₃ concentration (y = 0.1687x + 0.0291, $R^2 = 0.999$).

Figure S6. Calibration curve in 0.5 M Na₂SO₄ using potassium nitrite solutions of known concentration as standards. (a) Spectrophotometric UV-vis curves of salicylic acid after incubated for 20 minutes and (b) calibration curve used for the estimation of N-NO₂⁻ concentration. The absorbance at 540 nm was measured by a UV-Vis spectrophotometer, and the fitting curve shows good linear relation of absorbance with N-NO₂⁻ concentration (y = 2.3429x + 0.0069, R² = 0.999).

Figure S7. FE of NH₃ and NO₂⁻ at different applied potentials on CCOC(a), γ -Cu₂(OH)₃Cl(b) and Cu_{0.72}Co_{2.24}O₄(c) in 0.5 M Na₂SO₄ with 0.1 M KNO₃.

Figure S8. CV curves of CCOC (a), γ -Cu₂(OH)₃Cl (b) and Cu_{0.72}Co_{2.24}O₄ (c) at varied scan rates (40 to 100 mV s-1) in the region of -0.05 to -0.15 V (vs. Ag/AgCl).

Figure S9. TEM (a) and SEM (b) images of CCOC after reaction for 5 h.

Figure S10. Cu LMM spectrum of CCOC after reaction for 2.5 h.

Figure S11. Electrochemical *in situ* Raman spectra of γ -Cu₂(OH)₃Cl collected during NO₃⁻RR from 0 to 60 min in Ar-saturated 0.5 M Na₂SO₄ with 0.1 M KNO₃.

Figure S12. Electrochemical *in situ* FT-IR spectra of γ -Cu₂(OH)₃Cl collected during eNO₃⁻RR from 0 to 50 min in Ar-saturated 0.5 M Na₂SO₄ with 0.1 M KNO₃

	Wt%	
Со	45.27	
Cu	26.17	

Table S1. Mass ratio of Co and Cu in CCOC detected by ICP

Table S2. Performance comparison of CCOC with previously reported electrocatalysts for $NO_3^- RR$.

Catalysts	Electrolyte	NH ₃ yield	FE (%)	Referenc e
ССОС	0.5 M Na ₂ SO ₄ + 100 mM KNO ₃	7.9 mg h ⁻¹ cm ⁻²	96	This work
ССОС	0.5 M Na ₂ SO ₄ + 100 mM KNO ₃	10.7 mg h ⁻¹ cm ⁻²	88	This work
CuCoSP	1 M KOH + 100 mM KNO ₃	19.9 mg h ⁻¹ cm ⁻²	93	[1]
CuCo/NC	0.2 M Na ₂ SO ₄ + 200 mM NaNO ₃	9.1 mg h ⁻¹ mg _{cat} ⁻¹	95	[2]
Cu ₁ Co ₁ HHTP	0.5 M Na ₂ SO ₄ + 100 mM NaNO ₃	5.1 mg h ⁻¹ cm ⁻²	96	[3]
CuCoAl LDH	0.5 M PB+ 50 mM KNO ₃	$3.2 \text{ mg h}^{-1} \text{ cm}^{-2}$	100	[4]
CuCo ₂ O ₄ /CFs	1 M KOH + 100 mM KNO ₃	2.7 mg h ⁻¹ cm ⁻²	82	[5]
Cu-Co ₃ O ₄ /CC	0.1 M Na ₂ SO ₄ + 35.7 mM KNO ₃	$6.2 \text{ mg h}^{-1} \text{ mg}_{\text{cat}}^{-1}$	87	[6]
CoO/Cu foam	0.4 M Na ₂ SO ₄ + 40 mM NaNO ₃	$4.3 \text{ mg h}^{-1} \text{ cm}^{-2}$	97	[6]
Co ₃ O ₄ - Cu ₂₊₁ O/CF	0.5 M K ₂ SO ₄ + 10 mM KNO ₃	$4.4 \text{ mg h}^{-1} \text{ cm}^{-2}$	96	[7]
Cu ₁ -Fe	0.1 M K ₂ SO ₄ + 35.7 mM KNO ₃	~1.9 mg h ⁻¹ cm ⁻²	~90	[8]
PdCu SAA	0.5 M Na ₂ SO ₄ + 9.7 mM NaNO ₃	2.6 mg h ⁻¹ cm ⁻²	97.1	[9]
Mn-Cu NS	0.5 M K ₂ SO ₄ + 10 mM KNO ₃	$4.3 \text{ mg h}^{-1} \text{ cm}^{-2}$	95.8	[10]

Reference (SI)

- He, W., Zhang, J., Dieckhöfer, S., Varhade, S., Brix, A. C., Lielpetere, A., Seisel, S., Junqueira, J. R. C., & Schuhmann, W. (2022). Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. *Nature Communications*, 13(1), 1129. doi:10.1038/s41467-022-28728-4
- [2] Cheng, J., Dai, G., Sun, W., Yang, X., Xia, R., Xu, Y., & Mao, Y. (2024). Carbon Nanocage Confining CuCo Bimetallic Interface with Low Nitrate Adsorption Energy for Highly Efficient Electrochemical Ammonia Synthesis. *Energy & Fuels*, 38(3), 2501. doi:10.1021/acs.energyfuels.3c04371
- [3] Liu, P., Yan, J., Huang, H., & Song, W. (2023). Cu/Co bimetallic conductive MOFs: Electronic modulation for enhanced nitrate reduction to ammonia. *Chemical Engineering Journal*, 466, 143134. doi:<u>https://doi.org/10.1016/j.cej.2023.143134</u>
- [4] Wang, W., Chen, J., & Tse, E. C. M. (2023). Synergy between Cu and Co in a Layered Double Hydroxide Enables Close to 100% Nitrate-to-Ammonia Selectivity. *Journal of the American Chemical Society*, 145(49), 26678. doi:10.1021/jacs.3c08084
- [5] Niu, Z., Fan, S., Li, X., Wang, P., Liu, Z., Wang, J., Bai, C., & Zhang, D. (2022). Bifunctional copper-cobalt spinel electrocatalysts for efficient tandem-like nitrate reduction to ammonia. *Chemical Engineering Journal*, 450, 138343. doi:<u>https://doi.org/10.1016/j.cej.2022.138343</u>
- [6] Zhou, Y., Duan, R., Li, H., Zhao, M., Ding, C., & Li, C. (2023). Boosting Electrocatalytic Nitrate Reduction to Ammonia via Promoting Water Dissociation. ACS Catalysis, 13(16), 10846. doi:10.1021/acscatal.3c02951
- [7] Zhang, J., Xu, D., Lu, D., & Wang, H. (2024). The synergistic tandem effect of Cu2+1O and Co3O4 enhances the activity and selectivity of nitrate reduction to ammonia in neutral solution. *Applied Catalysis A: General*, 677, 119695. doi:<u>https://doi.org/10.1016/j.apcata.2024.119695</u>
- [8] Zhou, B., Yu, L., Zhang, W., Liu, X., Zhang, H., Cheng, J., Chen, Z., Zhang, H., Li, M., Shi, Y., Jia, F., Huang, Y., Zhang, L., & Ai, Z. (2024). Cu1–Fe Dual Sites for Superior Neutral Ammonia Electrosynthesis from Nitrate. *Angewandte Chemie International Edition*, 63(31), e202406046. doi:<u>https://doi.org/10.1002/anie.202406046</u>
- [9] Du, C., Lu, S., Wang, J.-a., Wang, X., Wang, M., Fruehwald, H. M., Wang, L., Zhang, B., Guo, T., Mills, J. P., Wei, W., Chen, Z., Teng, Y., Zhang, J., Sun, C.-J., Zhou, H., Smith, R. D. L., Kendall, B., Henkelman, G., & Wu, Y. A. (2023). Selectively Reducing Nitrate into NH3 in Neutral Media by PdCu Single-Atom Alloy Electrocatalysis. *ACS Catalysis*, *13*(16), 10560. doi:10.1021/acscatal.3c01088
- [10] Wu, L., Jia, S., Zhang, L., Wang, R., Feng, J., Sun, X., & Han, B. (2024). Efficient nitrate electroreduction over Mn-doped Cu catalyst via regulating Ncontaining intermediates adsorption configuration. *Science China Chemistry*,

67(6), 1969. doi:10.1007/s11426-024-2040-8