Supporting Information

Stepwise Electrochemical Reconstruction of Bi-Based Anode for Enhanced Aqueous Battery Energy Storage

Jiale Lei, Jinyue Song, Zhaoyang Song, Honggang Fan, Yanpeng Wang, Yusheng Luo, Shuang Liu, Yongcheng Jin* and Wei Liu*

School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, People's Republic of China. Email: weiliu@ouc.edu.cn (W. Liu)

Supplementary Equation:

$$D = R^2 T^2 / 2A^2 n^4 F^4 C^2 R \sigma^2 \tag{1}$$

$$Z' = Rs + Rct + \sigma \omega^{-1/2}$$
(2)

Where **R** (J mol⁻¹ K⁻¹), **T** (K), **A** (cm⁻²), **n**, **F** (C mol⁻¹), **C** (L mol⁻¹), **\sigma** and **\omega** (Hz) are the gas constant, absolute temperature, reaction area of electrode, quantity of transferred electrons, Faraday constant, concentration of electrolyte, Warburg diffusion coefficient, and angular frequency, respectively.

Supplementary Figures:

Figure S1. SEM images of α -Bi₂O₃.

Figure S2. CV curves obtained at varying numbers of electrochemical reconstruction cycles.

Figure S3. SEM image of electrochemically restructured in the fifth cycle.

Figure S4. SEM image of $BiO_x@BiO/Bi$ electrochemically restructured in the tenth cycle.

Figure S5. SEM image of $BiO_x@BiO/Bi$ electrochemically restructured in the fifteenth cycle.

Figure S6. SEM image of the CV activation without α -Bi₂O₃ electrolyte.

Figure S7. EPR spectra of without adding α -Bi₂O₃ after CV activation.

Figure S8. CV and GCD curves of α -Bi₂O₃ electrode.

Figure S9. GCD curves of α -Bi₂O₃ and BiO_x@BiO/Bi electrode.

Figure S10. TEM image of $BiO_x@BiO/Bi$ in the charged state.

Figure S11. TEM images of BiO_x@BiO/Bi in the discharged state.

Figure S12. SEM images of $BiO_x@BiO/Bi$ at the discharged state, half-discharged state and charged state after 1000 cycles.

Figure S13. Stress simulation diagram of $BiO_x@BiO/Bi$ (red represents tensile stress, blue represents compressive stress).

Figure S14. $BiO_x@BiO/Bi$ electrode of the relationship between peak currents and scan rates.

Figure S15. CV curves of the contribution rates of the capacitance and diffusioncontrolled capacitance at different scanning rates for BiO_x@BiO/Bi.

Figure S16. Bi concentration of different sample after 2000 cycles.

Figure S17. The CV curves of the NiCo-LDH and BiO_x@BiO/Bi electrodes examined at scan rate of 5 mV s⁻¹.

Figure S18. (a) The CV and (b) GCD curves of NiCo-LDH.

Sample	$S_{BET}[m^2 g^{-1}]$	V _{pore} [cm ³ g ⁻¹]	D _{aver} [nm]
α -Bi ₂ O ₃	1.9207	0.010176	21.192
BiO _x @BiO/Bi	12.906	0.089317	27.681

Table 1. The specific surface area and pore structure of α -Bi₂O₃ and BiO_x@BiO/Bi.

S_{BET}: BET surface area

V_{pore}: Total pore volume

D_{aver}: Average pore size

Table 2. The cycle durability of $BiO_x@BiO/Bi$ electrode comparison with the latest

Electrode	Current Density	Cycle Numble	Capacity Retention	Reference
Ві	0.52 A g ⁻¹	1700	88.8%	1
Bi ₂ O ₃ rods/RGO	2 A g ⁻¹	1000	94%	2
Bi ₂ O ₂ CO ₃ /RGO-100	5 A g ⁻¹	1000	84.5%	3
Bi-Bi ₂ O ₃ /CNT	1 A g ⁻¹	1000	72.9%	4
Bi ₂ Se ₃ @C	2 A g ⁻¹	1500	82.9%	5
Bi ₂ O ₃ /porous-RGO	0.5 A g ⁻¹	3000	81.1%	6
Bi ₂ O ₃ /rGO	5 A g ⁻¹	1000	30%	7
Bi/CN _x	1 A g ⁻¹	1000	79%	8
BiO _x @BiO/Bi	2 A g ⁻¹ 5 A g ⁻¹	7000 3000	103.4% 101.7%	This Work

reported bismuth-based anodes.

Reference

- 1 T. Qin, X. Chu, T. Deng, B. Wang, X. Zhang, T. Dong, Z. Li, X. Fan, X. Ge, Z. Wang, P. Wang, W. Zhang and W. Zheng, *J. Energy Chem.*, 2020, **48**, 21-28.
- 2 D. Maruthamani, S. Vadivel, M. Kumaravel, B. Saravanakumar, B. Paul, S. S. Dhar, A. Habibi-Yangjeh, A. Manikandan and G. Ramadoss, *J. Colloid Interface Sci.*, 2017, 498, 449-459.
- 3 L. Gurusamy, S. Anandan and J. J. Wu, *Electrochim. Acta.*, 2017, 244, 209-221.
- 4 H. Wu, J. Guo and D. Yang, J. Mater. Sci. Technol., 2020, 47, 169-176.
- 5 H. Qin, Y. Lv, P. Li, M. Xiao, H. Song, Q. Zhang and J. Yang, *New J. Chem.*, 2021, **45**, 21888-21895.
- 6 L. Gurusamy, S. Anandan, N. Liu and J. J. Wu, *J. Electroanal. Chem.*, 2020, **856**, 113489.
- 7 S. Liu, Y. Wang and Z. Ma, Int. J. Electrochem. Sci., 2018, 13, 12256-12265.
- 8 D. S. Butenko, X. Zhang, I. V. Zatovsky, I. V. Fesych, S. Li, R. Chen, M. Chufarov, O. Symonenko, N. I. Klyui and W. Han, *Dalton Trans.*, 2020, **49**, 12197-12209.