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Supporting information

Sensitivity of the Area to Changes in Size

4
—3F
<L
2,
. L
S}
<1+
0Fd N ] ! 1 ! 1 ! 1
o 5 10 15 20
w

Figure S1: Absolute value of the derivative of the dimensionless area with respect to the
hydrodynamic radius as a function of @ for different values of hy.

Figure S1 illustrates the absolute value of the derivative of the dimensionless area with
respect to the hydrodynamic radius, expressed as:
dA  dAdw dA
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as a function of @ for different values of hy. The results indicate that higher values of hg
lead to greater maximum values of the derivative. This observation suggests that biosens-
ing applications based on detecting changes in the hydrodynamic size of MNPs, resulting
from their interaction with molecules, will exhibit increased sensitivity when stronger AMF

amplitudes are employed.



Comparison Between Cycles Calculated Using the LRT and Those

Obtained by Numerically Solving the FP Equation
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Figure S2: Comparison between the cycles computed using the LRT (red dashed lines) and
those obtained by solving the FP equation (black continuous lines) for different values of hg
when w = 1.

In this section, we compare the cycles calculated using the LRT with those obtained by
numerically solving the FP equation. When hy < 1, both methods yield similar cycles.
However, as hg increases, the magnetic moment of the cycles calculated using the FP equa-
tion begins to saturate. This occurs because the normalized magnetization, defined as the
magnetization divided by the maximum magnetization achievable by the system (Nmy),
cannot exceed 1. Since saturation is a nonlinear effect, it is not captured by the LRT, which
causes the system’s magnetization to exceed the maximum physical value. As a result, the

area calculated using the LRT continues to increase with hg, diverging from the behavior



predicted by the FP equation.

Dependence of the Hysteresis Area on w and h( in the Low-Frequency
Regime

In this section, we analyze in detail how the area of the cycles varies with @ in the low-
frequency regime (w < 1). Figure S3a shows the area as a function of @ for various values
of hg, calculated numerically (dots) and compared with the predictions of the LRT. For
sufficiently low values of @, the area increases linearly with the dimensionless frequency,
following A = a(hg)w, as predicted by the LRT. However, while the LRT predicts that the
slope of the line is a(hg) = who/3, this prediction becomes invalid when by Z 1, as the actual

slope is lower than the LRT.
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Figure S3: a) Dependence of the area on @, calculated by numerically solving the FP equation
(dots), compared with the LRT prediction. b) Dependence of the function a(hg) on hy,
calculated from the numerical results (dots) and fitted to equation 2 (line).

To approximate a(hg) for any value of hgy, we calculated the slope of the line for a range
of hy values. The results are shown in Figure S3b. When h is small, the slope increases
linearly with hg, following a(hg) = who/3. However, for large values of hg, the slope saturates

at 2.532. To model this behavior, we considered a family of functions of the form:

ho

Oz(ho) = g . W, (2)
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where a and £ are constants. By fitting the numerical results, we determined that £ = 2.05
and a = 0.16 provide an accurate representation of a(hg), as shown by the red line in Figure
S3b.

In conclusion,

A((D < 17 ho) _ 7rh0w :
3 (1 + 0.16h2%5)z0

(3)

Dependence of the Hysteresis Area on hj in the High-Field Regime

In this section, we analyze the variation of the hysteresis area with the dimensionless pa-
rameters in the high-field regime (hy > 1). As shown in Figure 3e, in this regime, the area
of the cycles approaches zero, following a power law of the form A(@, ho > 1) = g(@)hy **°.
Similar to the approach used in the previous section, we calculated g(@) for various values

of @ and plotted the results in Figure S4. The results show that g(@) = 8w%5.
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Figure S4: Dependence of the function g(@w) on @, calculated from the numerical results
(dots) and fitted to a power law (line).

Using this result we can conclude,

A, hg > 1) = ———



Derivation of the Universal Relation for the Area

In this section, we consolidate the findings from the analysis of the hysteresis area across
different regimes into a single universal relation. To this end, we define a function Ay(&; hy),
which exhibits a single maximum and asymptotic power-law decay as w — 0 and @ —
oo. The function A, explicitly depends on the variable @ and five parameters, which are
themselves functions of hg. These parameters determine the position and magnitude of the
maximum of Ay, as well as the power-law exponents governing its asymptotic decay for @
deviating from Wmax, both for @ < @Wmax and @ > Gmax. A function A (@; ho) satisfying these

conditions is given by

e (©/Drmax )P
Ao(@:ho) = (c2 + 1(@0/Dmax)P2 )P

If py - p2 > po, this function tends to 0 as w — oo, as

Ao(@ > 13 hy) = (1>m-( ad )po_pl‘m. (6)

1 Wmax

According to the LRT, in this limit, the function must approach zero as ALRT((I} >

1,ho) = 7;—}:;), which imposes two constraints on the parameters:

po—p1-p2 = —1 (7)
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Furthermore, this function has a maximum at
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For the maximum to occur at @ = Wyay, an additional condition on the parameters must

be imposed. Combined with Equation 7, this condition can be expressed as:
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Furthermore, the maximum value of the area for a given value of hy (Equation 6 in the

main text) provides another constraint, expressed as:

_ 1 p1
Jos — ( ) (11)
C1+ Co

Up to this point, we have derived four equations for the five parameters. To fully de-

termine all the parameters, an additional condition must be imposed. This condition arises
from the power-law behavior that governs how the area approaches its maximum: in the
linear regime, when @ < @max, the area grows as A oc @. However, for hy > 1, it has been
shown that A oc @°% (see Equation 4 in the main text). To reproduce this behavior, we

postulate that pg is a function of hy given by:

po =1 — 0.45 exp[—ny1hy "] (12)

such that when hyg — 0, pg — 1, and when hy — oo, pg — 0.55. Here, n; and ny are
constants to be fitted later. Using all the conditions mentioned above, it is now possible to

express all the parameters as functions of known values and py:
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Note that when hy < 1, the following approximations hold: py ~ 1, @max ~ 1, Amax ~
%1, and consequently, p; = 1, po = 2, and ¢; = c; = 77370 Under these conditions, the LRT
equation is recovered. Furthermore, by construction, the position and value of the maximum
for any value of hy are correctly reproduced, as well as the behavior for large values of @.
However, the behavior when @ — 0 and hy > 1 is not accurately captured, as shown in the
main text: the area should grow linearly when @ is very small and, for larger values of @,
grow as w"?. To account for this behavior, we replace the term (ﬁ)po with the following

adjusted term:

QO /Dmax
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Here, p3 and ps must satisfy the condition:
1 —p3 - pa=po (19)

to ensure that the behavior at intermediate values of @ is preserved.Additionally, for the

area in the low-frequency regime to satisfy Equation 3, it is necessary that c3 satisfies:

1 o)
S ) .
With this new term, we have introduced three additional parameters but only two condi-
tions to determine them, leaving one free parameter (p3 = n3), which will be adjusted once
the final form of the equation is established. At this stage, the equation for the area can be
written as:
~ @ /Omax

A= [c3 + (@ Dmax )PP - [ea + €1(@/Dmax)P2]P (21)

Finally, we introduce an additional correction to ensure that, as hy — oo, the area

approaches zero in accordance with Equation 4 of the main text. To achieve this, we define



a new function, ¢4, which depends on hy and @, and include it as a multiplicative factor for

(W/Wmax)P? in the first term of the denominator. This results in the final expression:

(D/(Dmax

A= [co + cl(d)/(bmax)pz]iﬂl e+ (1+ 04)(@/@max)p3]p4

(22)

To preserve the limits already adjusted, ¢, must approach zero as @ — oo and as hg — 0.
Additionally, it must tend to zero following a power-law behavior as hg — oo. To satisfy

these conditions, we propose the following function:

Ny

= 3z OXD [— (n6d)"7 + nghg"")] (23)
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In this way, we have now established the final form of the phenomenological equation for
the area. The remaining step is to determine the values of the coefficients n;. To achieve
this, we employ the same Monte Carlo (MC) algorithm described in the next section. In this
case, the objective is to minimize the average relative error between the area values obtained
using the FPE and those predicted by Equation 22 for a given combination of n; values. This
procedure yields the following results: ny = 8.5, ny = 1.75, n3 = 1.8, ny = 1600, n5 = 0.5,

ne = 6.33, ny = 0.18, ng = 11, ng = 1.

Parallel Tempering Algorithm

In this section, we will provide a detailed description of the parallel tempering algorithm
employed.

The goal of the algorithm is to find a set of parameters (A) that optimally fits an equation
to a set of experimental data. These data are obtained by varying one or more known exper-
imental parameters (£), and the equation aims to reproduce the experimental measurements
using both the known parameters £ and the unknown parameters A. The algorithm finds
the vector A that minimizes an error function C(A), which measures how well the equation

fits the experimental data.



In the system we are studying, the known parameters are £ = {f, Hy}, while the pa-
rameters we wish to determine are A = {ry,, 0., My, ...}, along with any other experimental

values that affect the area and remain unknown. The error function used in this work is:

Nex ()Y _ (i)
e = 3y e g

Operation of the Algorithm

The algorithm starts by creating several "replicas” of the system, each with an initial set of
parameters A7 and an assigned Monte Carlo temperature (TJ@C). The temperature controls
the degree of exploration for each replica. Replicas with higher temperatures tend to make
larger changes in the parameters, allowing them to explore the solution space more broadly
and move between different local minima. In contrast, replicas with lower temperatures
make smaller adjustments, refining the search in regions closer to a local minimum.

Within each replica, a Monte Carlo process is used to adjust the parameters A’/. In each
step, the algorithm randomly selects one of the parameters Ag and modifies it by an amount
AA] = wA], where w is a random number generated uniformly between —e and €. The value
of ¢ is a computational parameter that controls the size of the adjustments in each iteration:
if it is too small, the algorithm progresses slowly, leading to potentially slow convergence.
On the other hand, if ¢ is too large, the changes in the parameters can be too abrupt, making
it difficult to find the minimum. In this work, ¢ = 0.05 has been used.

Once the parameter A} has been modified, the value of the error function C(A7) is re-
calculated with the new parameters. If the error decreases, the change in the parameters is
automatically accepted. If the error increases, the change may still be accepted or rejected,
based on a probability that depends on the temperature of the replica. This acceptance

probability is defined by the equation:

C (Anew) - C (Aold)
Tne

P. =exp |—
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where AJ_  is the new set of parameters, and AZld is the previous set of parameters. At
higher temperatures, the probability of accepting even worse solutions is greater, which helps
avoid getting trapped in local minima. At lower temperatures, only solutions that improve
or maintain the error are accepted, further refining the final adjustment.

This process is repeated iteratively and in parallel for each temperature, and every Ngyqp
steps, an attempt is made to exchange parameters A’ between replicas at different temper-
atures. To do this, a temperature TJ@C is randomly selected, and an attempt is made to
exchange the parameters between replicas at temperatures 7' ]{'Jc and T chl with a probability

given by:

Pyyap = min (1,exp [(8; — 8;41) (C(AF™) — C(AFY))]) (26)

where 3; = ﬁlc and Age“ is the set of parameters corresponding to temperature j that

produced the lowest error. The process then continues by attempting to exchange parameters
between replicas at temperatures TJ{ZFCQ and Tf\jg , and so on. When j + n exceeds the total
number of temperatures, the process resumes from the first temperature (j=0), ensuring
that all replicas are evaluated cyclically. This allows for faster exploration of the parameter
space than would be possible with a fixed temperature adjustment. Once the parameter
swaps between all temperatures have been attempted, the fitting algorithm continues from
the parameters A;’-“t.

This iterative process runs until the number of steps without achieving a reduction in
the error reaches a given threshold (N.,q), or until a predefined maximum number of steps
is reached (Naz)-

In this work, we have used Nepq = 1000, Nppep = 100000, and Ngypep = 100.
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Effect of the number of measures in the quality of the fit
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Figure S5: Relative error between the fit and the parameters used in the simulations as a
function of the number of measurements used in the fit. Panel (a) shows the fit for M, panel
(b) for r., and panel (c) for .. The parameters used in the simulations are M; = 150kA /m,
r. = 15nm, and . = 0.1 - r,.

In this section, we analyze how the relative errors between the fits and the simulation values
vary depending on the number of frequencies, Ny, and the number of amplitudes, Naap,
used in the fitting process. The maximum number of frequencies and amplitudes considered
corresponds to those employed throughout the rest of this work: Hy = 4, 12, and 24 kA /m,
and f = 10, 20, 30, 40, 50, 60, 80, 100 kHz. When reducing the number of field amplitudes,
we first removed the 4 kA /m amplitude, followed by the 12 kA /m. To reduce the number
of frequencies, we eliminated them in descending order, starting with the highest.

Figure S5 illustrates how the relative error varies as a function of Ny for different values

of Nayp. In all three cases studied, we observe that using at least two field amplitudes is

12



essential to achieve accurate parameter estimations. For fitting My, two field amplitudes and
two or three frequencies are sufficient. However, for accurately fitting o, it is necessary to

employ a larger number of frequencies (at least six).

SQUID measures of the MNPs
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Figure S6: DC magnetization cycles of the particles measured using a SQUID device at a)
4K and b) 298 K.

In figure S6 we show the DC magnetization of the particles at 4K and 298K. From the cycle
at 4K we note that the coercive field is very large which indicates the anisotropy constant is

big enough to consider the particles ferromagnets.
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TEM images of the MNPs
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Figure S7: a) TEM image of the MNPs employed in the experiments. b) Histogram of the
radius of the core of the particles. The mean radius is 13.58 nm and the standard deviation
is 1.55 nm
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