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Biotecnoloǵıa (CSIC), 28049 Madrid, Spain

§Condensed Matter Institute, IFIMAC, Madrid, 28049, Spain
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Supporting information

Sensitivity of the Area to Changes in Size
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Figure S1: Absolute value of the derivative of the dimensionless area with respect to the
hydrodynamic radius as a function of ω̃ for different values of h0.

Figure S1 illustrates the absolute value of the derivative of the dimensionless area with

respect to the hydrodynamic radius, expressed as:

dÃ

drh
=

dÃ

dω̃

dω̃

drh
= 3rhω̃

dÃ

dω̃
, (1)

as a function of ω̃ for different values of h0. The results indicate that higher values of h0

lead to greater maximum values of the derivative. This observation suggests that biosens-

ing applications based on detecting changes in the hydrodynamic size of MNPs, resulting

from their interaction with molecules, will exhibit increased sensitivity when stronger AMF

amplitudes are employed.
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Comparison Between Cycles Calculated Using the LRT and Those

Obtained by Numerically Solving the FP Equation
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Figure S2: Comparison between the cycles computed using the LRT (red dashed lines) and
those obtained by solving the FP equation (black continuous lines) for different values of h0

when ω̃ = 1.

In this section, we compare the cycles calculated using the LRT with those obtained by

numerically solving the FP equation. When h0 ≲ 1, both methods yield similar cycles.

However, as h0 increases, the magnetic moment of the cycles calculated using the FP equa-

tion begins to saturate. This occurs because the normalized magnetization, defined as the

magnetization divided by the maximum magnetization achievable by the system (Nm0),

cannot exceed 1. Since saturation is a nonlinear effect, it is not captured by the LRT, which

causes the system’s magnetization to exceed the maximum physical value. As a result, the

area calculated using the LRT continues to increase with h0, diverging from the behavior
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predicted by the FP equation.

Dependence of the Hysteresis Area on ω̃ and h0 in the Low-Frequency

Regime

In this section, we analyze in detail how the area of the cycles varies with ω̃ in the low-

frequency regime (ω̃ ≪ 1). Figure S3a shows the area as a function of ω̃ for various values

of h0, calculated numerically (dots) and compared with the predictions of the LRT. For

sufficiently low values of ω̃, the area increases linearly with the dimensionless frequency,

following Ã = α(h0)ω̃, as predicted by the LRT. However, while the LRT predicts that the

slope of the line is α(h0) = πh0/3, this prediction becomes invalid when h0 ⪆ 1, as the actual

slope is lower than the LRT.
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Figure S3: a) Dependence of the area on ω̃, calculated by numerically solving the FP equation
(dots), compared with the LRT prediction. b) Dependence of the function α(h0) on h0,
calculated from the numerical results (dots) and fitted to equation 2 (line).

To approximate α(h0) for any value of h0, we calculated the slope of the line for a range

of h0 values. The results are shown in Figure S3b. When h0 is small, the slope increases

linearly with h0, following α(h0) = πh0/3. However, for large values of h0, the slope saturates

at 2.532. To model this behavior, we considered a family of functions of the form:

α(h0) =
π

3
· h0

(1 + ahk
0)

1/k
, (2)
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where a and k are constants. By fitting the numerical results, we determined that k = 2.05

and a = 0.16 provide an accurate representation of α(h0), as shown by the red line in Figure

S3b.

In conclusion,

Ã(ω̃ ≪ 1, h0) =
πh0ω̃

3 (1 + 0.16h2.05
0 )

1
2.05

(3)

Dependence of the Hysteresis Area on h0 in the High-Field Regime

In this section, we analyze the variation of the hysteresis area with the dimensionless pa-

rameters in the high-field regime (h0 ≫ 1). As shown in Figure 3e, in this regime, the area

of the cycles approaches zero, following a power law of the form Ã(ω̃, h0 ≫ 1) = g(ω̃)h−0.45
0 .

Similar to the approach used in the previous section, we calculated g(ω̃) for various values

of ω̃ and plotted the results in Figure S4. The results show that g(ω̃) = 8ω̃0.55.
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Figure S4: Dependence of the function g(ω̃) on ω̃, calculated from the numerical results
(dots) and fitted to a power law (line).

Using this result we can conclude,

Ã(ω̃, h0 ≫ 1) =
8ω̃0.55

h0.45
0

(4)
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Derivation of the Universal Relation for the Area

In this section, we consolidate the findings from the analysis of the hysteresis area across

different regimes into a single universal relation. To this end, we define a function Ã0(ω̃;h0),

which exhibits a single maximum and asymptotic power-law decay as ω̃ → 0 and ω̃ →

∞. The function Ã0 explicitly depends on the variable ω̃ and five parameters, which are

themselves functions of h0. These parameters determine the position and magnitude of the

maximum of Ã0, as well as the power-law exponents governing its asymptotic decay for ω̃

deviating from ω̃max, both for ω̃ < ω̃max and ω̃ > ω̃max. A function Ã0(ω̃;h0) satisfying these

conditions is given by

Ã0(ω̃;h0) =
(ω̃/ω̃max)

p0

(c2 + c1(ω̃/ω̃max)p2)
p1 . (5)

If p1 · p2 > p0, this function tends to 0 as ω̃ → ∞, as

Ã0(ω̃ ≫ 1;h0) =

(
1

c1

)p1

·
(

ω̃

ω̃max

)p0−p1·p2
. (6)

According to the LRT, in this limit, the function must approach zero as ÃLRT (ω̃ ≫

1, h0) =
πh0

3ω̃
, which imposes two constraints on the parameters:

p0 − p1 · p2 = −1 (7)(
1

c1

)p1

=
πh0

3ω̃
(8)

Furthermore, this function has a maximum at

ω̃ = ω̃max

(
p0c2

c1(p1p2 − p0)

) 1
p2

(9)

For the maximum to occur at ω̃ = ω̃max, an additional condition on the parameters must

be imposed. Combined with Equation 7, this condition can be expressed as:

6



p0 · c2
c1

= 1 (10)

Furthermore, the maximum value of the area for a given value of h0 (Equation 6 in the

main text) provides another constraint, expressed as:

Ãmax =

(
1

c1 + c2

)p1

(11)

Up to this point, we have derived four equations for the five parameters. To fully de-

termine all the parameters, an additional condition must be imposed. This condition arises

from the power-law behavior that governs how the area approaches its maximum: in the

linear regime, when ω̃ < ω̃max, the area grows as Ã ∝ ω̃. However, for h0 ≫ 1, it has been

shown that Ã ∝ ω̃0.55 (see Equation 4 in the main text). To reproduce this behavior, we

postulate that p0 is a function of h0 given by:

p0 = 1− 0.45 exp[−n1h
−n2
0 ] (12)

such that when h0 → 0, p0 → 1, and when h0 → ∞, p0 → 0.55. Here, n1 and n2 are

constants to be fitted later. Using all the conditions mentioned above, it is now possible to

express all the parameters as functions of known values and p0:

p1 = log

(
πh0

3ω̃max

)
·
[
log

(
p0 + 1

p0

)]−1

(13)

p2 =
p0 + 1

p1
(14)

c1 =
p0

p1 · p2
· Ã

− 1
p1

max (15)

c2 =
c1
p0

(16)

(17)
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Note that when h0 ≪ 1, the following approximations hold: p0 ≈ 1, ω̃max ≈ 1, Ãmax ≈
πh0

6
, and consequently, p1 = 1, p2 = 2, and c1 = c2 =

3
πh0

. Under these conditions, the LRT

equation is recovered. Furthermore, by construction, the position and value of the maximum

for any value of h0 are correctly reproduced, as well as the behavior for large values of ω̃.

However, the behavior when ω̃ → 0 and h0 ≥ 1 is not accurately captured, as shown in the

main text: the area should grow linearly when ω̃ is very small and, for larger values of ω̃,

grow as ω̃0.55. To account for this behavior, we replace the term
(

ω̃
ω̃max

)p0
with the following

adjusted term:

Num =
ω̃/ω̃max

(c3 + (ω̃/ω̃max)p3)p4
. (18)

Here, p3 and p4 must satisfy the condition:

1− p3 · p4 = p0 (19)

to ensure that the behavior at intermediate values of ω̃ is preserved.Additionally, for the

area in the low-frequency regime to satisfy Equation 3, it is necessary that c3 satisfies:

c3 =

(
1

αω̃maxc
p1
2

) 1
p4

(20)

With this new term, we have introduced three additional parameters but only two condi-

tions to determine them, leaving one free parameter (p3 = n3), which will be adjusted once

the final form of the equation is established. At this stage, the equation for the area can be

written as:

Ã1 =
ω̃/ω̃max

[c3 + (ω̃/ω̃max)p3 ]
p4 · [c2 + c1(ω̃/ω̃max)p2 ]

p1 (21)

Finally, we introduce an additional correction to ensure that, as h0 → ∞, the area

approaches zero in accordance with Equation 4 of the main text. To achieve this, we define
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a new function, c4, which depends on h0 and ω̃, and include it as a multiplicative factor for

(ω̃/ω̃max)
p3 in the first term of the denominator. This results in the final expression:

Ã =
ω̃/ω̃max

[c2 + c1(ω̃/ω̃max)p2 ]
p1 · [c3 + (1 + c4)(ω̃/ω̃max)p3 ]

p4 (22)

To preserve the limits already adjusted, c4 must approach zero as ω̃ → ∞ and as h0 → 0.

Additionally, it must tend to zero following a power-law behavior as h0 → ∞. To satisfy

these conditions, we propose the following function:

c4 =
n4

hn5
0

, exp
[
−
(
n6ω̃

n7 + n8h
−n9
0

)]
(23)

In this way, we have now established the final form of the phenomenological equation for

the area. The remaining step is to determine the values of the coefficients ni. To achieve

this, we employ the same Monte Carlo (MC) algorithm described in the next section. In this

case, the objective is to minimize the average relative error between the area values obtained

using the FPE and those predicted by Equation 22 for a given combination of ni values. This

procedure yields the following results: n1 = 8.5, n2 = 1.75, n3 = 1.8, n4 = 1600, n5 = 0.5,

n6 = 6.33, n7 = 0.18, n8 = 11, n9 = 1.

Parallel Tempering Algorithm

In this section, we will provide a detailed description of the parallel tempering algorithm

employed.

The goal of the algorithm is to find a set of parameters (Λ) that optimally fits an equation

to a set of experimental data. These data are obtained by varying one or more known exper-

imental parameters (ξ), and the equation aims to reproduce the experimental measurements

using both the known parameters ξ and the unknown parameters Λ. The algorithm finds

the vector Λ that minimizes an error function C(Λ), which measures how well the equation

fits the experimental data.
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In the system we are studying, the known parameters are ξ = {f,H0}, while the pa-

rameters we wish to determine are Λ = {rh, σc,Ms, . . . }, along with any other experimental

values that affect the area and remain unknown. The error function used in this work is:

C(Λ) =
Nex∑
i=1

∣∣A(Λ, ξ(i))− Aexp(ξ
(i))

∣∣
Aexp(ξ(i))

(24)

Operation of the Algorithm

The algorithm starts by creating several ”replicas” of the system, each with an initial set of

parameters Λj and an assigned Monte Carlo temperature (T j
MC). The temperature controls

the degree of exploration for each replica. Replicas with higher temperatures tend to make

larger changes in the parameters, allowing them to explore the solution space more broadly

and move between different local minima. In contrast, replicas with lower temperatures

make smaller adjustments, refining the search in regions closer to a local minimum.

Within each replica, a Monte Carlo process is used to adjust the parameters Λj. In each

step, the algorithm randomly selects one of the parameters Λj
i and modifies it by an amount

∆Λj
i = wΛj

i , where w is a random number generated uniformly between −ε and ε. The value

of ε is a computational parameter that controls the size of the adjustments in each iteration:

if it is too small, the algorithm progresses slowly, leading to potentially slow convergence.

On the other hand, if ε is too large, the changes in the parameters can be too abrupt, making

it difficult to find the minimum. In this work, ε = 0.05 has been used.

Once the parameter Λj
i has been modified, the value of the error function C(Λj

i ) is re-

calculated with the new parameters. If the error decreases, the change in the parameters is

automatically accepted. If the error increases, the change may still be accepted or rejected,

based on a probability that depends on the temperature of the replica. This acceptance

probability is defined by the equation:

Pacc = exp

[
−C(Λnew)− C(Λold)

TMC

]
(25)
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where Λj
new is the new set of parameters, and Λj

old is the previous set of parameters. At

higher temperatures, the probability of accepting even worse solutions is greater, which helps

avoid getting trapped in local minima. At lower temperatures, only solutions that improve

or maintain the error are accepted, further refining the final adjustment.

This process is repeated iteratively and in parallel for each temperature, and every Nswap

steps, an attempt is made to exchange parameters Λj between replicas at different temper-

atures. To do this, a temperature T j
MC is randomly selected, and an attempt is made to

exchange the parameters between replicas at temperatures T j
MC and T j+1

MC with a probability

given by:

Pswap = min
(
1, exp

[
(βj − βj+1)(C(Λbest

j )− C(Λbest
j+1))

])
(26)

where βj =
1

T j
MC

and Λbest
j is the set of parameters corresponding to temperature j that

produced the lowest error. The process then continues by attempting to exchange parameters

between replicas at temperatures T j+2
MC and T j+3

MC , and so on. When j + n exceeds the total

number of temperatures, the process resumes from the first temperature (j=0), ensuring

that all replicas are evaluated cyclically. This allows for faster exploration of the parameter

space than would be possible with a fixed temperature adjustment. Once the parameter

swaps between all temperatures have been attempted, the fitting algorithm continues from

the parameters Λbest
j .

This iterative process runs until the number of steps without achieving a reduction in

the error reaches a given threshold (Nend), or until a predefined maximum number of steps

is reached (Nmax).

In this work, we have used Nend = 1000, Nmax = 100000, and Nswap = 100.
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Effect of the number of measures in the quality of the fit
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Figure S5: Relative error between the fit and the parameters used in the simulations as a
function of the number of measurements used in the fit. Panel (a) shows the fit for Ms, panel
(b) for rc, and panel (c) for σc. The parameters used in the simulations are Ms = 150 kA/m,
rc = 15 nm, and σc = 0.1 · rc.

In this section, we analyze how the relative errors between the fits and the simulation values

vary depending on the number of frequencies, Nf , and the number of amplitudes, NAMP ,

used in the fitting process. The maximum number of frequencies and amplitudes considered

corresponds to those employed throughout the rest of this work: H0 = 4, 12, and 24 kA/m,

and f = 10, 20, 30, 40, 50, 60, 80, 100 kHz. When reducing the number of field amplitudes,

we first removed the 4 kA/m amplitude, followed by the 12 kA/m. To reduce the number

of frequencies, we eliminated them in descending order, starting with the highest.

Figure S5 illustrates how the relative error varies as a function of Nf for different values

of NAMP . In all three cases studied, we observe that using at least two field amplitudes is
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essential to achieve accurate parameter estimations. For fitting Ms, two field amplitudes and

two or three frequencies are sufficient. However, for accurately fitting σc, it is necessary to

employ a larger number of frequencies (at least six).

SQUID measures of the MNPs
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Figure S6: DC magnetization cycles of the particles measured using a SQUID device at a)
4K and b) 298 K.

In figure S6 we show the DC magnetization of the particles at 4K and 298K. From the cycle

at 4K we note that the coercive field is very large which indicates the anisotropy constant is

big enough to consider the particles ferromagnets.
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TEM images of the MNPs

Figure S7: a) TEM image of the MNPs employed in the experiments. b) Histogram of the
radius of the core of the particles. The mean radius is 13.58 nm and the standard deviation
is 1.55 nm
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