Supporting Information

Green carbon dot@silver nanoparticles hybrid: as turn-on fluorescent probe for detection and quantification of cholesterol and glucose

Nasrin Rahmatian¹, Shahryar Abbasi^{1,*,} Naser Abbasi^{2,3}, Mohammad Tavakkoli Yaraki^{4,*}

¹Department of Chemistry, University of Ilam, Ilam, Iran

²Department of pharmacology School of medicine Ilam university of medical sciences.

³Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran

⁴School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia

*Corresponding Authors

Prof. Shahryar Abbasi, E-mail: <u>Sh_abbasi@ilam.ac.ir</u>

Dr. Mohammad Tavakkoli Yaraki, E-mail: mohammad.tavakkoliyaraki@mq.edu.au; mty206@yahoo.com

Figure S1. a) Some compounds in the extract of *Oliveria decumbens Vent* as a source of carbon for the green synthesis of CDs, b) DLS analysis and c) TEM image of CD.

Figure S2. a) fluorescence spectra, $\lambda ex = 350 \text{ nm}$, $\lambda em = 409 \text{ nm}$ for CD and CD@AgNPs b) UVvisible spectrum for CD and CD@AgNPs c) ζ -potential diagram for CD and CD@AgNPs d)EDX analysis of CD@AgNPs e) Table of various elements and their respective weight and atomic percentage.

Figure S3. a) Surface plasmon resonance spectrum maximum λ as a function of volume, different volumes of AgNO3 (200, 400, 600, 800, 1000 μ L) and 20 mM AgNO3 and volume ratio (1:4) of Ag⁺: CD were used for synthesis. b) Time evolution over a range of time

(0,3,6,9,12,15,18,21,24,27,30 min) in a volume of 1000 μ L AgNO3 and 20 mM AgNO3 and a volume ratio of (1:4) Ag+:CD were used for synthesis.

Figure S4. Examining the changes in the ratio of F to F0 in the presence of disturbing factors in the reaction medium a) Fluorescence emission of CD@AgNPs in the presence of a concentration of 60 μ M of cholesterol and several potential interferences (such as Na+, K+, maltose, fructose, saccharide and lactose, xylose glutamic acid, lysine) with a concentration of 10 times Cholesterol were considered as interfering samples b) Similarly, in the concentration of 250 μ M of Glucose, the presence of interfering factors was checked with a concentration of 10 times that of Glucose.

Table S1. Cholesterol and Glucose recovery percentage by CD@AgNPs assay in blood plasma,analytes and urine.

	Spiked	Recovery (PL)	Recovery (PL) /%
Cholesterol (µM)	20μΜ	20.85 ±2.11	104. 24 \pm 9.23
Glucose (μM)	200μΜ	209.97 ± 1.89	104.99 <u>+</u> 2.71

Table S2. Comparison of different nanomaterials and their analytical performance for glucose and cholesterol detection

Mode of	Nanomaterial	Target	Real	Linear range	Reference
Detection	Used / Sensing		Sample	and	s
	platform			LOD	
Electrochemical	Ag/NSC/ Nafion	Glucose		concentration range 5–3000 μM	[1]
				LOD =46 μM	
Fluorescence	gold nanoclusters (AuNCs) encapsulated with mono-(6-mercapto- 6-deoxy)-β- cyclodextrin (SH-β- CD)	Cholesterol	serum	concentration range 20.00 ~ 150.00 μM LOD = 16.07 μM	[2]
Colorimetric	U6NH2@AuNPs- ChOx@MIPs	Cholesterol	blood	concentration range 2.9 mM - 6.7 mM LOD = 2.4 mM	[3]
Amperometry	platinum/reduced graphene oxide/poly(3- aminobenzoic acid) (Pt/rGO/P3ABA)	Cholesterol	serum	concentration range 0.25-6.00 mM and 0.25-4.00 mM, LOD =40.5 μM	[4]
Fluorescence	CQDs-3- aminophenylboroni c acid (APBA)	Glucose	saliva	concentration range 0.165 to 8 Mm LOD= 165 μM	[5]
Electrochemical	NPG/SPE screen-printed electrode (SPE) with nano porous gold (NPG)	Cholesterol	serum	concentration range 50 μM to 6 mM LOD = 8.36 μM	[6]
Dual optical colorimetry and turn on fluorescence	Nanoparticle Hybrids (Bio@ AgNPs).	Cholesterol Glucoes	Serum urine	concentration range 10-400 glucoes 0.5-40 Cholesterol LOD (Glucose) = 41.90 μM LOD (Cholestero)= 5.50 μM	[7]

Colorimetry	Cellulose-based strips (CBS)	Glucoes	urine	concentration range 3.9–6.4 Mm LOD= 0.45 mM	[8]
Fluorescence	CD@AgNPs Hybrids	Cholesterol Glucose	Serum urine	concentration range 2-60 μM Cholestero LOD= 3.0 μM 4-250 μM Glucose LOD = 38 μM	Current study

References

- 1. Khalaf, N., et al., *Chitosan polymer complex derived nanocomposite (AgNPs/NSC) for electrochemical non-enzymatic glucose sensor*. International journal of biological macromolecules, 2020. **146**: p. 763-772.
- 2. Liu, X., et al., A detection system for serum cholesterol based on the fluorescence color detection of beta-cyclodextrin-capped gold nanoclusters. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024. **308**: p. 123769.
- 3. Cao, M., et al., *Molecularly imprinted sensor based on cascade enzyme system supported by metal-organic framework (Uio-66-NH2) for sensitive colorimetric detection of cholesterol.* Sensors and Actuators B: Chemical, 2024. **404**: p. 135235.
- 4. Phetsang, S., et al., Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly (3-aminobenzoic acid) film-modified screen-printed carbon electrode. Bioelectrochemistry, 2019. **127**: p. 125-135.
- 5. Cortes, F.R.U., et al., *Pulsed laser fragmentation synthesis of carbon quantum dots (CQDs) as fluorescent probes in non-enzymatic glucose detection*. Applied Surface Science, 2024. **665**: p. 160326.
- 6. Wang, S., et al., Sensitive electrochemical detection of cholesterol using a portable paper sensor based on the synergistic effect of cholesterol oxidase and nanoporous gold. International Journal of Biological Macromolecules, 2021. **189**: p. 356-362.
- 7. Xu, H.V., Y. Zhao, and Y.N. Tan, *Nanodot-directed formation of plasmonic-fluorescent nanohybrids toward dual optical detection of glucose and cholesterol via hydrogen peroxide sensing.* ACS applied materials & interfaces, 2019. **11**(30): p. 27233-27242.
- 8. Luo, X., et al., *Cellulose-based strips designed based on a sensitive enzyme colorimetric assay for the low concentration of glucose detection.* Analytical chemistry, 2019. **91**(24): p. 15461-15468.