Electronic Supplementary Information:

Catalytic and Biological Properties of Ag-Pt Bimetallic Nanoparticles: Composition-Dependent Activity and Cytotoxicity

Rongtao Liu^{1,2}, Hongwei Liang¹, Jian Liu^{1,3}, Huoqing Zhong¹, Rongxue Cui¹, Xin Li¹, Bing Yan^{1*}, Hongyu Zhou^{1*}

¹ Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong, 510006, China

² School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, China

² School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China

*Corresponding author

Bing Yan (drbingyan@yahoo.com), Hongyu Zhou (hyzhou001@gzhu.edu.cn).

Fig. S1. Schematic depicting the preparation process of AP NPs through a chemical co-reduced method.

Fig. S2. Characterization of Ag, AP, and Pt NPs by SEM.

Fig. S3. The EDS analysis and relative atomic proportion. (A) AP37, (B) AP55, and (C) AP73.

Fig. S4. The distribution of AP NPs in different medium. (A) Effective particle size in water and culture medium. (B) The zeta potential in culture medium containing 10% FBS. (C) The dispersibility and stability of AP55 NPs at different concentrations in water and DMEM.

Fig. S5. Time-dependent Ag and Pt ion release from Ag, Pt, and AP NPs. The initial concentrations of Ag, Pt, and AP NPs were 5.0 mg/L.

Fig. S6. Images of TMB oxidation after mixing ROS chemical specific scavengers of Ag, AP55, and Pt NPs.

Sample	Ag molar ratio (%)	Pt molar ratio (%)	
Ag NP	100	0	
AP73	68.86±0.39	32.14±0.52	
AP55	51.15±0.44	48.85±0.27	
AP37	28.57±0.36	71.43±0.48	
Pt NP	0	100	

Table S1. ICP-MS elemental molar ratio of AP NPs

Table S2. Apparent Kinetic Parameters of Ag, AP37, AP55, AP73, and Pt NPs as Oxidase Mimics for TMB Oxidation^a

Sample	[E] _{total} (nM)	K _m (µM)	V _{max} (µM∙min⁻¹)	K _{cat} (min ⁻¹)
Ag NP	0.083	52.85	0.13	1.57×10 ³
AP73	0.083	23.47	0.18	2.17×10 ³
AP55	0.083	13.25	0.19	2.29×10 ³
AP37	0.083	20.51	0.15	1.81×10 ³
Pt NP	0.083	31.27	0.14	1.69×10 ³

^a [E]_{total} is the molar concentration of the NRs. $K_{\rm m}$ is the Michaelis constant and $V_{\rm max}$ is the maximal reaction velocity. $K_{\rm cat}$ is the catalytic constant, where $K_{\rm cat} = V_{\rm max} / [E]_{\rm total}$.