Supporting Information for In-intercalation and Si-containing protective layer enhance electrochemical performance of NaNi_{0.5}Mn_{0.5}O₂ for sodium-ion

batteries

Peng Sun,^a Chenhui Wang,^a Jing Liu,^a Jie Liao,^a Yaohan Fei,^a Ziyan Zhang,^a Ning Nie,^b Jiangjiexing

Wu, c,* You Han,^a Jinli Zhang^a and Wei Li^{a,*}

^a School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R.

China.

^b Viterbi School of Engineering, University of Southern California, Los Angeles, California, 90089, USA.

^c School of Marine Science and Technology, Tianjin University, Tianjin, 300072, P. R. China.

Corresponding authors: * E-mail: <u>liwei@tju.edu.cn</u> wujiangjiexing2007@126.com

Fig. S1 Rietveld refinement profiles of (a) NM, (b-d) modified with different In contents intercalation and (e, f) Si@In-doping samples.

Fig. S2 TEM elemental mappings of Na, O, Mn, Ni, In and Si of (a) NM, (b) NM-0.3In and (c)0.5Si@NMIn

Fig. S3 The charge-discharge curves of (a) the NM55, (b) the NM-0.3In and (c) the 0.5Si@NMIn at 2.0-4.0 V and 25 °C under different rates.

Fig. S4 The galvanostatic charge-discharge (GCD) curves of (a) NM, (b) NM-0.3In.

Fig. S5 CV tests of (a) NM, (b) NM-0.3In and (c) 0.5Si@NMIn at the different scan rates. (d) The linear fitting of the peak currents of oxidation/reduction peaks at different scan rates with the square root of the scan rates.

Fig. S6 The Nyquist plots of NM, NMIn-0.3 and 0.5Si@NMIn cathodes in the (a) 1st, (b) 50th and (c) 100th over 2.0-4.0 V.

Fig. S7 SEM images of (a) the initial pole piece of 0.5Si@NMIn and (b) the spent pole piece of 0.5Si@NMIn experienced 100 cycles at 1 C. TEM images of (c) the fresh 0.5Si@NMIn and (d) the spent 0.5Si@NMIn experienced 100 cycles at 1 C.

Fig. S8 SEM images of (a) the initial pole specie of NM and (b) the spent pole specie of NM experienced 100 cycles at 1 C.

01	Ni 2p _{3/2} (eV)		Ni 2p _{1/2} (eV)		Ni content (%)	
Sample	Ni ²⁺	Ni ³⁺	Ni ²⁺	Ni ³⁺	Ni ²⁺	Ni ³⁺
NM	854.46	856.15	871.91	873.72	82.60	17.40
NM-0.3In	854.56	856.25	872.11	874.55	79.38	20.62
0.5Si@NMIn	854.79	856.58	872.42	874.65	75.65	24.35

Table S1 Relative percentages and binding energies of Ni^{2+}/Ni^{3+} in Ni 2p XPS spectra.

Sample	Mn 2p _{3/2} (eV)		Mn $2p_{1/2}$ (eV)		Mn content (%)	
	Mn^{3+}	Mn ⁴⁺	Mn^{3+}	Mn ⁴⁺	Mn^{3+}	Mn ⁴⁺
NM	641.53	643.50	652.49	653.79	65.90	34.10
NM-0.3In	641.62	643.52	653.08	653.96	59.68	40.32
0.5Si@NMIn	641.85	643.66	653.03	654.01	57.37	42.63

	Adso	orbed O	O V	acancy	Lat	tice O
Sample	O 1s	O	O 1s	O	O 1s	O
	(eV)	(%)	(eV)	(%)	(eV)	(%)
NM	528.75	11.18	530.93	77.98	535.27	10.84
NM-0.3In	528.81	9.95	530.98	79.16	535.31	10.89
0.5Si@NMIn	529.43	8.51	531.22	78.51	535.66	12.98

Table S3 Relative percentages and binding energies of oxygen species in O 1s XPS spectra.

Table S4 Na⁺ diffusion coefficient (D_{Na}^+) of NM, NM-0.3In and 0.5Si@NMIn.

Samula	$D_{\rm Na}{}^+ ({\rm cm}^2{ m s}^{-1})$			
Sample	Desodiation	Sodiation		
NM	3.48×10 ⁻¹¹	4.55×10 ⁻¹²		
NM-0.3In	3.65×10 ⁻¹¹	8.90×10 ⁻¹²		
0.5Si@NMIn	4.76×10 ⁻¹¹	1.12×10 ⁻¹¹		

Table S5 EIS fitting results of NM, NM-0.3In and 0.5Si@NMIn.

Sample	Cycle	$R_{\rm s}(\Omega)$	$R_{\rm f}+R_{\rm ct}\left(\Omega\right)$
	1 st	4.14	80.82
NM	50 th	2.93	128.45
	100 th	5.08	265.4
	1 st	3.63	69.7
NM-0.3In	50 th	3.42	118.38
	100 th	3.58	170.22
0.5Si@NMIn	1 st	6.15	63.78
	50 th	3.15	97.20
	100^{th}	1.86	124.87

Sample	Pressure (Mpa)	Resistivity (k Ω m)	Conductivity (S m ⁻¹)
	2	30.70	3.26×10-5
NM	3	28.85	3.47×10 ⁻⁵
	4	27.05	3.70×10 ⁻⁵
NM-0.3In	2	27.91	3.58×10 ⁻⁵
	3	26.02	3.84×10 ⁻⁵
	4	24.11	4.15×10 ⁻⁵
0.5Si@NMIn	2	22.98	4.35×10 ⁻⁵
	3	20.87	4.79×10 ⁻⁵
	4	18.91	5.29×10 ⁻⁵

Table S6 Resistivity and conductivity results of NM, NM-0.3In and 0.5Si@NMIn.

Galvanostatic intermittent titration technique (GITT) measurement in the 1st cycle and 100th cycle are utilized to determine the Na⁺ diffusion coefficient (D_{Na^+}) within NM, NM-0.3In and 0.5Si@NMIn cathodes. The D_{Na^+} value can be derived using the following formula:

$$D_{\mathrm{Na}^{+}} = \frac{4}{\pi\tau} \left(\frac{m_{B} V_{M}}{M_{B} A} \right)^{2} \left(\frac{\Delta E_{S}}{\Delta E_{\tau}} \right)^{2}$$
(S1)

Where $\tau(s)$ represents the galvanostatic current pulse time, V_M , M_B , and m_B are the molar volume (obtained from the Rietveld refinement results from GSAS II), molecular weight, and the molar mass of the active material, respectively. Meanwhile, A signifies the electrode surface area, ΔE_{τ} and ΔE_s is the voltage change during the constant current pulse and the corresponding relaxation process.