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Fig. S1 The number of publications in the Web of Science citation database and documents by
subject area in the Scopus database utilizing keywords ("Solar" OR "Light") AND ("Absorption")
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Supplementary Note 1: Properties of TiN and TiO, materials.

Although gold (Au)'? and silver (Ag)** are extensively studied for applications linked to hot
electrons, their limited practical uses in solar energy stem from their high cost, low reserves, poor
thermal and chemical stability, and narrow absorption peaks. Additionally, these disadvantages
restrict their large-scale applications in hot electron generation, thermal photovoltaics, thermal
emission, and solar absorbers. Then, TiN>® is appropriate for harsh environments and high-
temperature applications such as solar steam,” solar thermoelectric power,® and solar
thermophotovoltaic® due to its exceptional thermal, chemical, and mechanical stability. Low
electrical resistivity, high electron mobility, and metallic conductivity are some of its electrical
characteristics.’® Compared to Au, which has a typical value of 5.4 eV, TiN has a work function of
3.2-4.4 eV against vacuum.>! It is a good option for hot carrier-enhanced solar energy
conversion since its work function is larger than or equal to the electron affinity of the majority
of semiconductor metal oxides utilized in photocatalysis, such as TiO,. The whole solar spectrum

is covered by TiN nanostructures because they exhibit strong plasmon resonances in the red.!?

Concerning optical properties, compared to Au nanoparticles, TiN can inject twice as many hot
electrons into TiO,, resulting in broadband absorption efficiency spanning the 500—1200 nm
wavelength range.'? Together with TiOy, it also forms an ohmic junction, which permits
"downhill" hot electron collection and raises conversion efficiencies over the gold.*?> A summary
of the operation ranges and advantageous of material properties for TiN, Ag, and Au is presented
in Table S1 based on data adapted from References 1 and 13. Conversely, TiO2, a widely used

benchmark material in the environmental and energy sectors, is a successful semiconductor for
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plasmonic nanostructures because of its unique electronic and photoelectrochemical properties,

non-toxicity, cost-effectiveness, and photo/chemical stability.!*> It could be applied in solar

cells, water splitting, and wastewater treatment.'®'’ However, due to its wide band gap (~3.2

eV),* it has a low absorption response and is insensitive to visible light. Nevertheless, when

integrated with plasmonic materials such as TiN, TiO2 can be activated in the visible range of the

solar spectrum through plasmon-induced hot electron injection, enabling visible-light-driven

functionalities.!> Thus, in order to increase the photocatalytic efficiency of wide band gap

semiconductors in visible light, great efforts have been made recently to design and realize

plasmonic-coupled low-bandgap transition metal oxides (TiO,).1**8 Thus, this study presents an

exciting path towards new solar energy harvesting devices with high absorption ability.

Table S1 Material properties and operation ranges for TiN, Ag, and Au based on data adapted
from References 1 and 13.

Epsilon Near

Work

Heat

Melting

Tuneable

. . ) Low Thermal . UVv/Vis NIR
Zero (ENZ) Function Capacity point . Carrier ) .
Bu . loss  Stability . Absorption Absorption
(nm) (eV) (MJm=3K1?) (°C) Concentration
TiN ~495 3.2-4.4 3.2 ~2950 X v v v v
Ag <300 4.3-4.6 2.5 ~962 X X v X
Au <300 5.4 2.5 ~1064 v X X v X
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Fig. S2 (a) A schematic of the suggested process to fabricate the proposed nanostructure using
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lithography-free technology. Suggested steps for the fabrication of designed nanostructures.
(b) The effect of different parameters in the anodization process on the geometry of the
proposed nanostructure. (c) A schematic of the other suggested process to fabricate the
proposed TiN nanotube array using direct printing (soft lithography) technology. Suggested steps
for the fabrication of TiN nanotubes. Since direct printing can quickly and accurately generate
nano- and micro-scale patterns over a large area, it could be used in this process to fabricate the
deposition hydrogen silsesquioxane (HSQ) mask. After that, oblique angle deposition (OAD) could
be used to deposit nanotubes. This method produces different nanostructures due to the
shadowing effect when the substrate and source material are tilted with respect to each other.
Conventional nanotube production methods are limited by material constraints; however, these
limitations have been addressed by the application of e-beam evaporation for deposition. (d)
Morphological control of the TiN nanotube as a function of several fabrication parameters. (c, d)

Reprinted with permission from Reference (19). Copyright 2024 Elsevier.

Supporting Note 2: Influence of different structural parameters.

To determine the optimal geometry for maximizing absorption, we performed a detailed
parametric sweep of key structural parameters, as presented in Fig. S3. In Fig. S3a, the sweep
period (P) is reduced from 300 nm to 180 nm, resulting in a decrease in the gap between the

nanotubes and an increase in the absorption width. This is actually a nanoantenna property of
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nanotubes. In contrast, until P reaches its optimum (P=240 nm), the rate of absorption ability
rises with decreasing P. Following that, however, the amount of absorption also falls with
decreasing P, particularly in the regions beyond A=600 nm. Parameter h is varied in Fig. S3b from
100 nm to 225 nm, and as h increases, the absorption expands. However, as h increases, the
absorption ability rises until it reaches its optimum (h=175 nm) and subsequently falls as h
increases. Parameter rin Fig. S3cis swept between 30 and 70 nm. Up until it reaches the optimum
parameter (r=60 nm), the absorption rate rises with an increase in r. After that, it falls as r
increases. A sweep of parameter R from 70 nm to 110 nm is also shown in Fig. S3d. When R
increases, the absorption ability rises until it reaches the optimal parameter (R=80 nm), after
which it broadens but becomes less strong. As parameter t is increased and swept from 2.5 nm
to 40 nm, Fig. S3e,f shows broad absorption with red shifts. Consequently, we can achieve
tuneable absorption or broadband absorption with different wavelengths when t is changed. It
is clear from Fig.s S3e,f that a range of parameter t variations (2.5 < t < 20 nm) has the least
impact on the proposed absorber's absorption spectra capabilities and nearly maintains an
absorption ability above 90%. This observation implies that there is a significant degree of
manufacturing tolerance in the absorber, which makes the practical production procedure for
this absorber simpler. The absorption ability, however, falls when the parameter t exceeds 20
nm. Depending on the absorption range of the intended applications, these graphs of changing

parameters for optimization can be a useful data sheet for tuning optical absorption.
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Fig. S3 Absorption spectra of the proposed absorber for Scale=1 (P=240 nm) with different geometric

parameters. (a) period of a unit cell, P; (b) the height of the TiN nanotube, h; (c) the major radius, R; (d)

the minor radius of the TiN nanotube, r; and (e, f) the thicknesses of the thin layer of TiO,, t. The insets

show its magnified section.
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Fig. S4 Absorption spectra of the proposed absorber for Scale=1/2 (P=120 nm) with different

geometric parameters. (a) period of a unit cell, P; (b) the height of the TiN nanotube, h; (c) the major

radius, R; (d) the minor radius of the TiN nanotube, r; and (e, f) the thicknesses of the thin layer of TiO;,

t. The insets show its magnified section.
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Fig. S5 Absorption spectra of the proposed absorber for Scale=2 (P=480 nm) with different

geometric parameters. (a) period of a unit cell, P; (b) the height of the TiN nanotube, h; (c) the major

radius, R; (d) the minor radius of the TiN nanotube, r; and (e, f) the thicknesses of the thin layer of

TiOy, t. The insets show its magnified section.
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Table S2 The dimensions of the optimal geometric parameters of the proposed

nanostructure with different scales along the x and y axes; all dimensions are in nm.

P R r t
Scale=1/3 80 26.6 20 1.6
Scale=1/2 120 40 30 2.5
Scale=1 240 80 60 5
Scale =2 480 160 120 10
Scale=3 720 240 180 15
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Supplementary Note 3: Influence of different configurations.

Fig. Sba depicts several nanotubes with square unit cells, and Fig. S6b displays the absorption
spectra for each of these configurations. As seen in Fig. S6a, S1 stands for TiN nanotubes, S2 for
TiO2 nanotubes, S3 for S2 coated with a thin layer of TiN, and S4 for S1 coated with a thin layer
of TiO2. The TiN film substrate is positioned beneath the nanotubes in each of these instances.
The square unit cell and the centered rectangular (CR) case exhibit absorption that is nearly
identical to each other and repeats the same pattern, according to the absorption spectrum
analysis shown in Fig. S6b and Fig. 3d. Additionally, Fig. S6c displays several nanopillar designs
with CR unit cells, and Fig. S6 (d) exhibits the absorption spectra of each of these setups. As shown
in Fig. S6c, P1 is a TiN nanopillar, P2 is a TiO2 nanopillar, P3 is P2 coated with a thin layer of TiN,
and P4 is P1 coated with a thin layer of TiO,. According to the results in Fig. S6d, absorption in all

nanopillar instances is acceptable in the 200-500 nm range but unfavorable in other regions.
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Fig. S6 (a) Different nanotubes in a square unit cell, and (b) the absorption diagram related to
each of these cases. (c) Different nanopillars with CR unit cells, and (d) the absorption diagram

related to each of these setups.
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Fig. S9 Distribution of the E-field (|E|/|Eo|) under TM-polarized excitation at different
wavelengths. (a) In the x-z plane, centered on the proposed MTM. In the x-y plane (b) at the
middle of the height of nanotubes, (c) above the height of the TiN nanotubes, and (d) above the
MTM. The schematics on the left illustrate the placement of the electric field monitor, which is

oriented perpendicular to each displayed plane.

S18



(a) 150 (b) 15

1.45 — 1.45+ ==Lightline
g . =@=Metamaterial
E 1.40 — E 14
§ 1 35 — » ? 1.35
s d )
1.25 i .
1.20 | 12
0.40 0.45 0.50 0.4 0.45 0.5
k k,

Fig. S10 (a) Dispersion relation (angular frequency w versus propagation constant k) for
plasmonic metamaterial accessed from Nature Photonics publication.? The green curve shows
the light line, the blue curve shows the quasi-analytical modal expansion approximation (MEA)
calculation, and red points indicate the FDTD simulation. The inset displays a schematic of the
plasmonic metamaterial arrays of copper-lined holes. The geometrical parameters of the unit cell
are g=66 um, h=58 um, and d=100 um. (b) A resimulation of the dispersion relation results of the
Nature Photonics publication?® shows the great agreement of our simulation with the results of
this article. (a) Reprinted with permission from Reference 20. Copyright 2008 Nature Publishing

Group.
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Table S3 Structural factors and performance of the proposed nanostructure absorber with those of similar recent

works.

Material

TiN/MoS,/SiO,
/Al

TiOy/TiN

TiOo/Ti

TiN

TiN

TiN

Pt/TiO2/Au

TiO,/SiN/SiO;

TiN/GaN

TiO2/TiN

Structure
type

Nanodisk
arrays

Disks
arrays

Nanotube
arrays

Nanodisk
arrays
Nanocavity
(nanotube)
arrays

Nanohole
arrays

Nanohole
arrays

Pillar-
arrays

Elliptical
nanoanten
na arrays

nanocavity
(nanotube)
arrays

Lithography Thickness

-free status

No

No

Yes

No

Yes

No

Yes

No

No

Yes

Absorption
Range > 90%
(nm) (nm)
150 400-900
250 316—1426
>2700 -
160 400-780
250 200-800
200 ~400-700
75 400-450
230 -
260 300-1116
200-1300
330 (in air)
200-1700
(in water)
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Peak
Absorption
(%)

99%
@500 nm &
680 nm

99%
@~1240 nm

75%
@300nm &
800 nm
95%
@700nm

99%
@500nm

90%
@500 nm

90%
@400 nm

85%
@~350 nm

99%
@368 nm &
560 nm

99%
@600 nm &
1020 nm

Sim./Expt.

Sim.

Sim.

Sim./Expt.

Sim./Expt.

Sim./Expt.

Sim./Expt.

Sim./Expt.

Sim./Expt.

Sim.

Sim.

Reference

[21] Huo et al.,
Nanoscale
Research Letters
2017
[22] Liu et al.,
Solar Energy
Materials and
Solar Cell 2017
[23] Low et al.,
ACS Sustainable
Chem. Eng. 2018
[24] Yu, et al., ACS
Photonics 2021
[25] Mascaretti, et
al., Nano Energy
2021
[26] Mishra et al.,
J. Phys. Chem. C
2021
[14] Jia, et al.,
ACS Photonics
2022
[27] El-Jallal, et al.,
Optics Express
2022
[28] Ashrafi, et al.,
Nanoscale
2024

Proposed
nanostructure
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Fig. S11 Validation against available experimental data from the literature. (a) Schematic
structure of the TiN-based solar absorber in Mascaretti’s article:?> TiN nanocavities (250 nm
thickness), Ti2N thermal layer (~ 1 um), and the rest of the Ti substrate, as well as simulated
power absorption across the nanocavities array. (b) Experimental (symbols) and simulated (solid
lines) absorption (red) and reflectance (black) of the TiN-based solar absorber in air for
Mascaretti’s article.?® (c) A resimulation of the results of the absorption spectra of the structure
proposed in Mascaretti’s article displays a good agreement of our simulation with the results of
this article. The slight difference in our simulation compared with the results of the article can be
due to the difference in the permittivity of the TiN material used in the simulations. (a, b)

Reprinted with permission from Reference 25. Copyright 2021 Elsevier.
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Table S4 Detail of PSO-ANFIS model.

Parameter Value
Maximum iterations number 200
Maximum particles number 1000
Initial inertia weight (Wmin) 0.7
Inertia Weight Damping Ratio (Wdamp) 0.89
Cognitive acceleration (C1) 1
Social acceleration (C2) 2

PSO Initialization

|

Generate initial PSO population
!

Compute fitness value —

|

Update velocity and position No

!

stopping standards
meet

Yes

Determine global best (gbest) for
ANFIS parameters

}
End

Fig. S12 Flowchart of the PSO-ANFIS model used in this study.
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Fig. S13 Histogram of the data used in this study for the frequency and data distribution.
Table S5 Descriptive statistics of the data used in this study.
Mean STD Min Max 25% Median 75%
R 73.5564 36.8918 35.0000 160.0000 40.0000 80.0000 80.0000
r 53.1285 28.1996 15.0000 120.0000 30.0000 60.0000 60.0000
t 7.7865 7.7742 2.5000 40.0000 2.5000 5.0000 10.0000
p 218.8010 109.5648 100.0000 480.0000 120.0000 240.0000 240.0000
h 172.6700 25.2059 100.0000 250.0000 175.0000 175.0000 175.0000
A 551.9075 447.3292 200.0000 2500.0000 260.3624 372.5924 651.9345
Absorption 0.9177 0.1123 0.2467 1.0000 0.9113 0.9541 0.9768
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