Supporting Information

Enhanced thermoelectric performance in $(Ta_{1-x}Mo_x)_4SiTe_4$ /polyvinylidene fluoride (PVDF) organic-inorganic flexible thermoelectric composites

Miao Liu,^{1,2} Dudi Ren,² Chenyu Ye,² Tingwei Yin,² Sanyin Qu,^{2,a)} Pengan Zong^{1,a)}

¹College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China

²State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics,

Chinese Academy of Sciences, Shanghai 200050, China

^{a)}Authors to whom correspondence should be addressed: <u>qusanyin@mail.sic.ac.cn</u> and pazong@njtech.edu.cn

Fig. S1 Rietveld refinements results for the X-ray diffraction (XRD) patterns of $(Ta_{1-x}Mo_x)_4SiTe_4$ (x = 0, 0.001, 0.002, 0.005, 0.01, and 0.05) whiskers.

Fig. S2 EDS maps Sum Sepectrum of the $(Ta_{1-x}Mo_x)_4SiTe_4$ (x = 0.005) whiskers.

Fig. S3 EDS maps of the $(Ta_{1-x}Mo_x)_4SiTe_4$ (x = 0.005) whiskers. (a) all elements, (b) Ta, (c) Si, (d) Te, and (e) Mo mappings.

Fig. S4 The carrier concentration and mobility of Mo-doped $(Ta_{1-x}Mo_x)_4SiTe_4/PVDF$ composite films, (*x* = 0, 0.001, 0.002, 0.005, 0.01, and 0.02).

Fig. S5 Stability of $Ta_4SiTe_4/PVDF$ and $(Ta_{0.995}Mo_{0.005})_4SiTe_4/PVDF$ composite films in Ar atmosphere.