## Supporting information for the manuscript Bi<sub>2</sub>Se<sub>3</sub>-PtSe<sub>2</sub> heterostructure ultrabroadband UV-to-THz negative photoconductive photodetectors with wide-temperature-range operation

## **Contents list**

Figure S1. Process flow diagram of device fabrication.

Figure S2. Relationship between photocurrent and optical power density.

Figure S3. Stability curve of photocurrent.

Figure S4. Linear fitting of optical power to current.

Figure S5. Bias voltage versus current at different wavelengths.

Figure S6. Performance Comparison of Different Devices.



Figure S1. Preparation flow of Bi<sub>2</sub>Se<sub>3</sub>-PtSe<sub>2</sub> heterojunction photodetector.



**Figure S2.** Plot of photocurrent versus optical power density for Bi<sub>2</sub>Se<sub>3</sub>-PtSe<sub>2</sub> heterojunction photodetector under 405-1550 nm band illumination.



Figure S3. Stability testing of  $Bi_2Se_3$ -PtSe<sub>2</sub> heterojunction photodetectors under 405-808 nm illumination.



**Figure S4.** Optical power versus current in  $Bi_2Se_3$ -PtSe<sub>2</sub> heterojunction photodetectors under 405-808 nm illumination.



Figure S5.  $Bi_2Se_3$ -PtSe<sub>2</sub> heterojunction photodetector bias voltage versus current in 405-1550 nm illumination.



**Figure S6.** Performance comparison of different Bi<sub>2</sub>Se<sub>3</sub>-PtSe<sub>2</sub> heterojunction photodetectors under the same test conditions.