Supporting Information

Broadband Laser Protection and Enhanced Nonlinear Optical Response

of Samarium-Metal-Organic Framework Based White/Black Carbon

Hybrids

M. Saravanan,^{a,d*,} Vinod K. Rajput^b, K. Suresh^f, Sri Ram G Naraharisetty^b, Sajan D. George^c, I. Vetha Potheher^{a**}, Marek Brzeziński^d, and B.N. Vedha Hari^e

^aDepartment of Physics, University College of Engineering, BIT Campus, Anna University, Tiruchirapalli 620 024, Tamil Nadu, India.

^bSchool of Physics, University of Hyderabad, Gachibowli, Telangana-500046, India.

^cCentre for Applied Nanosciences (CANs), Manipal Academy of Higher Education, Manipal 576104, India.

^dCentre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.

^ePharmaceutical Technology Laboratory, #214, ASK-II, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.

^fInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wroclaw 50-422, Poland.

Corresponding author Email: <u>*msandy.physics@gmail.com</u>, <u>**potheher@aubit.edu.in</u>

Scheme S1 Schematic diagram of the experimental procedure used for preparing Sm-MOF, Sm-MOF/BN and Sm-MOF/rGO hybrids.

Figure S2 EDS mapping images of Sm, C, O, B, N (a) Sm-MOF, (b) Sm-MOF/BN and (c) Sm-MOF/rGO hybrids.

Figure S3 EDS elemental spectra of (a) Sm-MOF, (b) Sm-MOF/BN and (c) Sm-MOF/rGO hybrids.

Figure S4 XPS spectra of Sm-MOF hybrids: (a) core spectrum of Sm 3d and (b) core spectrum of N 1s. XPS spectra of Sm-MOF/BN hybrids: core spectrum of (c) Sm 3d, (d) N 1s (e) B 1s and (f) O 1s. XPS spectra of Sm-MOF/rGO hybrids: core spectrum of (g) Sm 3d, (h) N 1s (i) O 1s and (j) C 1s.

Figure S5. XRD of Sm-MOF, Sm-MOF/BN and Sm-MOF/rGO hybrids and (*) indicate the rGO and BN.

Figure S6 PL emission spectra of Sm-MOF, Sm-MOF/BN and Sm-MOF/rGO hybrids.

Figure S7 Life time decay curve of(a) Sm-MOF, (b) Sm-MOF/BN and (c) Sm-MOF/rGO hybrids.

Figure S8 Energy level diagrams of hybrid materials at different wavelengths: 2PA process at 600 nm and 3PA process at 700-1000 nm.

Table S1. Comparison of the surface area of Sm-MOF, Sm-MOF/BN and Sm-MOF/rGO by BET technique.

Table S2. The nonlinear absorption coefficients of other composites, excited under femtosecond laser excitations.

Scheme S1: Schematic diagram of the experimental procedure used for preparing Sm-MOF, Sm-MOF/BN and Sm-MOF/rGO.

Figure S2: EDS mapping images of Sm, C, O, B, N (a) Sm-MOF, (b) Sm-MOF/BN and (c) Sm-MOF/rGO.

Figure S3: EDS elemental spectra of (a) Sm-MOF, (b) Sm-MOF/BN and (c) Sm-MOF/rGO.

Figure S4: XPS spectra of Sm-MOF hybrids: (a) core spectrum of Sm 3d and (b) core spectrum of N 1s. XPS spectra of Sm-MOF/BN hybrids: core spectrum of (c) Sm 3d, (d) N 1s (e) B 1s and (f) O 1s. XPS spectra of Sm-MOF/rGO hybrids: core spectrum of (g) Sm 3d, (h) N 1s (i) O 1s and (j) C 1s.

Figure S5: XRD of Sm-MOF, Sm-MOF/BN and Sm-MOF/rGO hybrids and (*) indicate the rGO and BN.

Figure S6: PL emission spectra of Sm-MOF, Sm-MOF/BN and Sm-MOF/rGO

Figure S7: Life time decay curve of (a) Sm-MOF, (b) Sm-MOF/BN and (c) Sm-MOF/rGO

Figure S8: Energy level diagrams of hybrid materials at different wavelengths: 2PA process at 600 nm and 3PA process at 700-1000 nm.

Table S1: Comparison of the surface area of Sm-MOF, Sm-MOF/BN and Sm-MOF/rGO by BET technique.

Sample	Surface area (m ² /g)	Pore Radius (Å)	Pore volume (cc/g)
Sm-MOF	160.1 m ² /g	15.4	0.246 cc/g
Sm-MOF/BN	210.4 m ² /g	16.1	0.311 cc/g
Sm-MOF/rGO	276.9 m ² /g	16.2	0.472 cc/g

Table S2: The nonlinear absorption coefficients of other composites, excited under femtosecond laser excitations.

	Experimental condition	Nonlinear	
Compound	(Lagor excitation)	absorption	Reference
	(Laser excitation) coefficient	coefficient	S
rGO	800 nm, (100 fs)	$8.0 \times 10^{-15} (m/W) (2PA)$	[1]
GO	800 nm (100 fs, 1 kHz)	$0.47 \text{ cm}^3 \cdot \text{GW}^{-2}(3\text{PA})$	[2]

BiFe2O4-NaNbO3	800 nm (100 fs)	1.1×10^{-14} (m/W) (2PA)	[3]
HAgNC-590	808 nm (100 fs, 1 kHz)	0.0075 (cm/GW) (2PA)	[4]
Ag-Fe ₂ O ₄ -rGO	800 nm (150 fs, 80 MHz)	3.8× 10 ⁻¹⁰ (m/W) (2PA)	[5]
$5Li_2O-50ZnO-40B_2O_3-$	700 nm (50 fs. 1 kHz)	$1.84(10^{-11} \text{ m/W})(2\text{PA})$	[6]
$5Sm_2O_3$	700 mm (50 is, i kriz)	1.04(10 m/ w)(21 A)	
rGO–ZnSe	808 nm (150 fs, 1 kHz)	(0.14–0.2 cm GW ⁻¹ (2PA)	[7]
Au-Fe ₂ O ₄ -rGO	800 nm (150 fs, 80 MHz)	9.3× 10 ⁻¹⁰ (m/W) (2PA)	[8]

- S. Perumbilavil, P. Sankar, T. Priya Rose and R. Philip, *Appl. Phys. Lett.*, 2015, 107, 051104.
- X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan and Q. H. Xu, J. Phys. Chem. Lett., 2012, 3, 785–790.
- R. P. Ummer, P. Sreekanth, B. Raneesh, R. Philip, D. Rouxel, S. Thomas and N. Kalarikkal, *RSC Adv.*, 2015, 5, 67157–67164.
- 4. B. K. Dadhich, S. Bhattacharya, S. Ballav, B. Bhushan, P. K. Datta and A. Priyam, *ACS Appl. Nano Mater.*, **2020**, *3*, 11620–11629.
- T. C. Sabari Girisun, M. Saravanan and S. Venugopal Rao, J. Appl. Phys., 2018, 124, 195105.
- K. Hanamar, G. Jagannath, S. B. Kolavekar, N. H. Ayachit, H. Patnala, D. A. Aloraini, A. H. Almuqrin, M. I. Sayyed, A. G. Pramod, K. Keshavamurthy and S. V. Rao, *Opt. Laser Technol.*, 2024, 168, 109859.
- A. B. Rahaman, A. Sarkar, T. Singha, K. Chakraborty, S. Dutta, T. Pal, S. Ghosh, P. K. Datta and D. Banerjee, *Nanoscale Adv.*, 2020, *2*, 1573–1582.
- T. C. Sabari Girisun, M. Saravanan and V. R. Soma, *ACS Appl. Nano Mater.*, 2018, 1, 6337–6348.