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Fig. S1 Optical images of cotton cloth and carbon cloth.
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Fig. S2 SEM of (a) Unoxidized carbon cloth has a smooth surface (b) Unoxidized 

carbon cloth loaded with α-Fe2O3.
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Fig. S3 SEM image and optical image of Fe(acac)3/PVP nanofibers. The inset is the 

optical image of Fe(acac)3/PVP fibrous mat.
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Fig. S4 (a–d) SEM images of carbon oxide cloth hydrothermally loaded with Fe2O3 

for 2 h, 4 h, 6 h, 8 h. (e, f) The SEM image of α-Fe2O3@oxidized carbon cloth-64 is 

listed in the first column, and the rest is the EDS image of α-Fe2O3@oxidized carbon 

cloth-64.
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Fig. S5 XPS spectra of (a) C 1s of oxidized carbon cloth and α-Fe2O3@oxidized 

carbon cloth-64, (b) Fe 2p of α-Fe2O3@oxidized carbon cloth-64.
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Fig. S6 ICP-MS of α-Fe2O3@oxidized carbon cloth-16, 32, 64. The ordinate is the 

content of Fe element per mg of oxidized carbon cloth.



7

Fig. S7 Surface resistance of carbon with different carbonization temperatures. 
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Fig. S8 The influence of different thermal oxidation temperatures on the resistance of 

carbon cloth-800.



9

Fig. S9 The resistance changes of carbon cloth-800 under different curvature 

deformations.
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Fig. S10 The influence of the contact angle (a) and the liquid absorption rate (b) of the 

carbon cloth-800 surface at different thermal oxidation temperatures.
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Fig. S11 Water contact angle of (a) oxidized carbon cloth and (b) carbon cloth. 
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Fig. S12 The percentage of current reduction per 10000 s of α-Fe2O3@oxidized carbon 

cloth-16, 32, 64.
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Table S1. The EIS results for α-Fe2O3@oxidized carbon cloth-16, 32, 64.

Materials α-Fe2O3@oxidized
 carbon cloth-16

α-Fe2O3@oxidized 
carbon cloth-32

α-Fe2O3@oxidized 
carbon cloth-64

CTR1/Ω 89.4 97.3 54.1
CTR2/Ω 310.3 292 319.4



Table S2 Comparison of this work with other advanced work.

Photoelectrode Methods Electrolyte
Current density

(mA·cm−2)

Overpotential

(mV)

Tafel plots 

(mV·dec−1)
Ref.

α-Fe2O3@oxidized carbon cloth-64 Electrospinning, Hydrothermal H2SO4 10 193 42 This work

Er-RuOx Electrospinning, Pyrolysis H2SO4 10 200 45 40

IrVI-ado Oxidative ligand substitution, 
Electrodeposition H2SO4 10 250 32 41

Ta-RuO₂ Molten salt method HClO4 10 201 55 42

Ni(OH)2/NF Electroplating KOH 10 200 52.6 43

CuCo Diatomic Catalysts Ball-Milling, Pyrolysis KOH 10 339 45.3 44

Irw-Co₃O₄@NC Ir doping via ion exchange, Pyrolysis KOH 10 244 60 45

LaMnO₃(LMNO) Nitridation KOH 10 250 54 46

NiBDC-FcCA Solvothermal reaction KOH 10 280 46.3 47

Ni0.75Fe0.25Ox(001) Magnetron sputtering KOH 10 289 48 48

NP-(FeCoNi)₂Nb Melt-spinning, Chemical dealloying KOH 10 235 63.6 49

Ni2P-NCDs-Co(OH)2-NF-3 Immersion KOH 500 389 65 50

CeO2/CoS2-6 Hydrothermal KOH 10 283 33.2 51

Co/CoOx/NCNFs-0.1 Electrospinning, Annealing KOH 10 429 109.4 52


