## **Supporting Information**

## Leaf-Like Hematite-Decorated Flexible Carbon-Textile for Enhancing Mass Transfer at Triphasic Interfaces in Photoanodes

Zhou Zhou<sup>a, #</sup>, Mengmeng Zhu<sup>a, #</sup>, Chengkun Song<sup>a, b, #</sup>, Mingyu Tang<sup>a</sup>, Shujing Li<sup>a</sup>,

Xiangyu Meng<sup>a, b, \*</sup>, Yueming Sun<sup>a</sup>, Yunqian Dai<sup>a, b, \*</sup>

<sup>a</sup> School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China

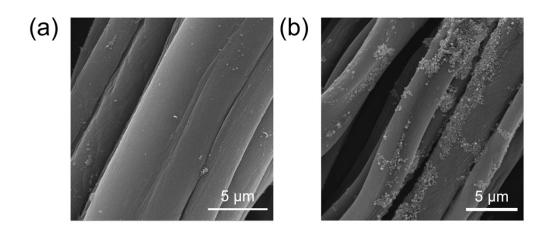
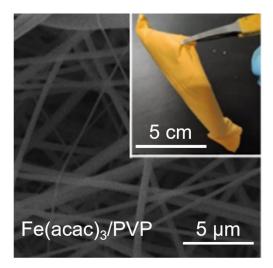
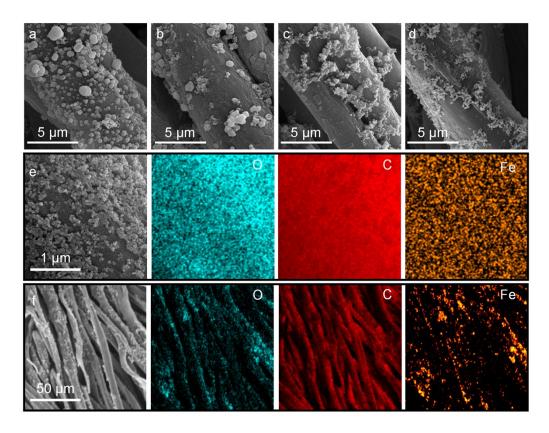
<sup>b</sup> Purple Mountain Laboratories, Nanjing, Jiangsu 211111, P. R. China

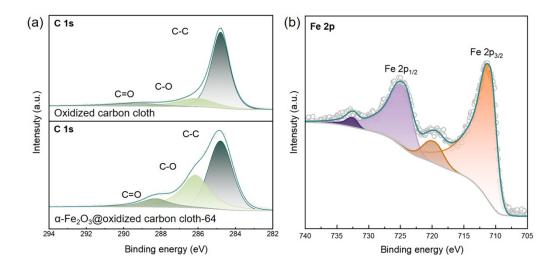
<sup>#</sup> These authors contributed equally to this work.

<sup>\*</sup> Corresponding author: daiy@seu.edu.cn, xiangyu.meng@seu.edu.cn

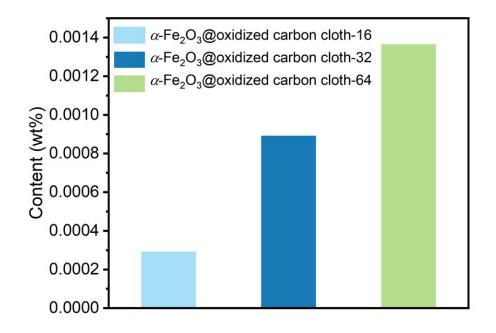


Fig. S1 Optical images of cotton cloth and carbon cloth.



Fig. S2 SEM of (a) Unoxidized carbon cloth has a smooth surface (b) Unoxidized carbon cloth loaded with  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>.




**Fig. S3** SEM image and optical image of Fe(acac)<sub>3</sub>/PVP nanofibers. The inset is the optical image of Fe(acac)<sub>3</sub>/PVP fibrous mat.



**Fig. S4** (**a**–**d**) SEM images of carbon oxide cloth hydrothermally loaded with  $Fe_2O_3$  for 2 h, 4 h, 6 h, 8 h. (**e**, **f**) The SEM image of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>@oxidized carbon cloth-64 is listed in the first column, and the rest is the EDS image of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>@oxidized carbon cloth-64.



**Fig. S5** XPS spectra of (**a**) C 1s of oxidized carbon cloth and  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>@oxidized carbon cloth-64, (**b**) Fe 2p of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>@oxidized carbon cloth-64.



**Fig. S6** ICP-MS of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>@oxidized carbon cloth-16, 32, 64. The ordinate is the content of Fe element per mg of oxidized carbon cloth.

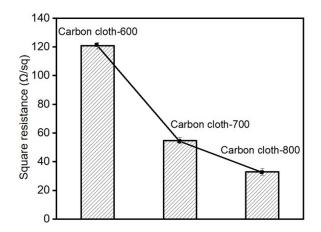
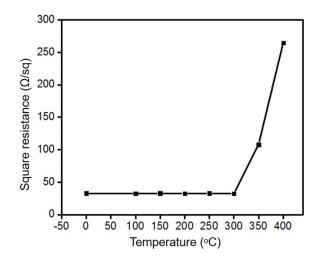




Fig. S7 Surface resistance of carbon with different carbonization temperatures.



**Fig. S8** The influence of different thermal oxidation temperatures on the resistance of carbon cloth-800.

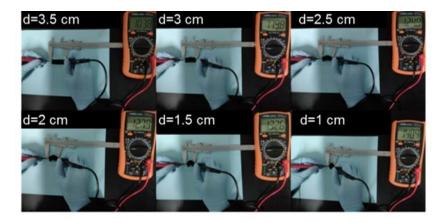



Fig. S9 The resistance changes of carbon cloth-800 under different curvature deformations.

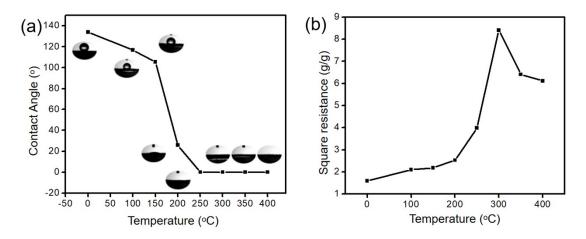



Fig. S10 The influence of the contact angle (a) and the liquid absorption rate (b) of the carbon cloth-800 surface at different thermal oxidation temperatures.

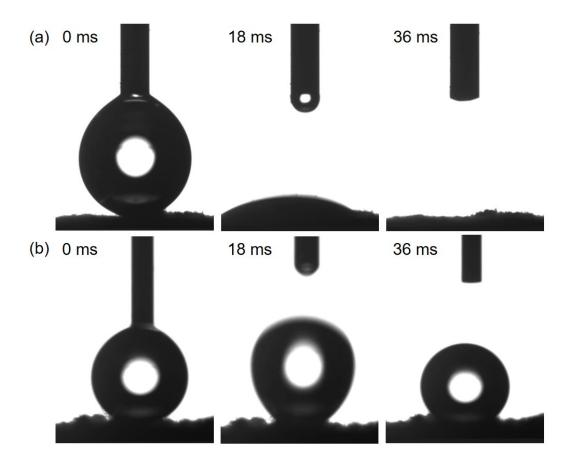



Fig. S11 Water contact angle of (a) oxidized carbon cloth and (b) carbon cloth.

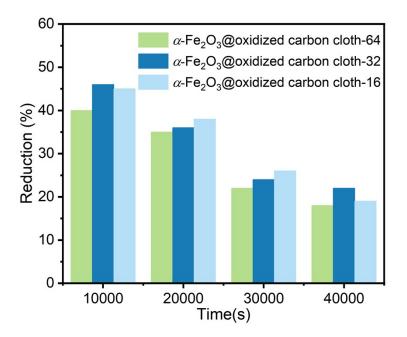



Fig. S12 The percentage of current reduction per 10000 s of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>@oxidized carbon cloth-16, 32, 64.

| cloth-32 carbon cloth-64 |
|--------------------------|
| 7.3 54.1                 |
| 92 319.4                 |
| )(                       |

Table S1. The EIS results for  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>@oxidized carbon cloth-16, 32, 64.

**Table S2** Comparison of this work with other advanced work.

| Photoelectrode                                                     | Methods                                             | Electrolyte       | Current density      | Overpotential | Tafel plots           | DC        |
|--------------------------------------------------------------------|-----------------------------------------------------|-------------------|----------------------|---------------|-----------------------|-----------|
|                                                                    |                                                     |                   | $(mA \cdot cm^{-2})$ | (mV)          | $(mV \cdot dec^{-1})$ | Ref.      |
| $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> @oxidized carbon cloth-64 | Electrospinning, Hydrothermal                       | $H_2SO_4$         | 10                   | 193           | 42                    | This work |
| Er-RuO <sub>x</sub>                                                | Electrospinning, Pyrolysis                          | $H_2SO_4$         | 10                   | 200           | 45                    | 40        |
| Ir <sup>VI</sup> -ado                                              | Oxidative ligand substitution,<br>Electrodeposition | $H_2SO_4$         | 10                   | 250           | 32                    | 41        |
| Ta-RuO <sub>2</sub>                                                | Molten salt method                                  | HClO <sub>4</sub> | 10                   | 201           | 55                    | 42        |
| Ni(OH) <sub>2</sub> /NF                                            | Electroplating                                      | КОН               | 10                   | 200           | 52.6                  | 43        |
| CuCo Diatomic Catalysts                                            | Ball-Milling, Pyrolysis                             | КОН               | 10                   | 339           | 45.3                  | 44        |
| Irw-Co <sub>3</sub> O <sub>4</sub> @NC                             | Ir doping via ion exchange, Pyrolysis               | КОН               | 10                   | 244           | 60                    | 45        |
| LaMnO <sub>3</sub> (LMNO)                                          | Nitridation                                         | КОН               | 10                   | 250           | 54                    | 46        |
| NiBDC-FcCA                                                         | Solvothermal reaction                               | КОН               | 10                   | 280           | 46.3                  | 47        |
| $Ni_{0.75}Fe_{0.25}O_x(001)$                                       | Magnetron sputtering                                | КОН               | 10                   | 289           | 48                    | 48        |
| NP-(FeCoNi)2Nb                                                     | Melt-spinning, Chemical dealloying                  | КОН               | 10                   | 235           | 63.6                  | 49        |
| Ni <sub>2</sub> P-NCDs-Co(OH) <sub>2</sub> -NF-3                   | Immersion                                           | КОН               | 500                  | 389           | 65                    | 50        |
| $CeO_2/CoS_2-6$                                                    | Hydrothermal                                        | КОН               | 10                   | 283           | 33.2                  | 51        |
| Co/CoO <sub>x</sub> /NCNFs-0.1                                     | Electrospinning, Annealing                          | КОН               | 10                   | 429           | 109.4                 | 52        |