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Simulation Methods

Magnetic field between two magnets. We obtained the magnetic field density between the two magnets placed
in oppositely polarized fashion using Magnetic Fields, No Current module of COMSOL Multiphysics software. We
modeled the experimental setup in 2D axis-symmetric geometry. The magnets were modeled as two rectangular
domains each 0.5 inches wide and 1 inch long separated by a distance of 55mm. A bigger rectangular domain 5 inches
in width and 9.6 inches in length was considered, including both magnets. We defined the remanent flux density of
13 200G for each magnets in opposite directions. We used the free triangular mesh to discretize all of the domains
and solve for the magnetic field using MUMPS solver.

Lattice Boltzmann method. We utilized the lattice Boltzmann method (LBM), a mesoscopic numerical technique,
to resolve the hydrodynamics. The fundamental element of the LBM is the discrete-velocity distribution function
ni(r, t), which shows the density of fictitious fluid particles moving with a discrete velocity ci at position r and time
t. The fictitious fluid particles only stream with a set of q velocities {ci}, where i = 0, ..., q − 1, on a regular lattice
with sufficient symmetry such that the conservation laws are fulfilled and the macroscopic hydrodynamic fields are
recovered. We applied the D3Q19 model, which indicates the fluid particles stream along 19 directions in a 3-D space.
The evolution of the distribution function is governed by the lattice Boltzmann equation

ni(r + ci∆t, t+∆t) = ni(r, t) +

19∑
i=0

Lijn
neq
j (r, t) + n′

i(r, t), (S1)

where r denotes the position vector of the lattice site, t is the time, ∆t is the discrete time step, nneq
j ≡ nj − neq

j ,
and Lij represents the matrix element of the collision operator. Here, a multi-relaxation time scheme was employed
for the collision operator [1]. The disturbance to ni from the external body force is incorporated by n′

i(r, t). The
equilibrium distribution function neq

i for the D3Q19 model is often chosen as

neq
i = wi

(
ρ+
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c2s

+
ρuu : (cici − c2s1)

2c4s

)
, (S2)

where wi, is the weight factor for the D3Q19 model, ρ is the fluid density, u is the fluid velocity, the momentum flux
is written as j = ρu, and cs = c/

√
3 with c = ∆x/∆t. The lattice spacing ∆x and the time step ∆t are often set to

unity. Two eigenvalues of the collision operator λ and λb control the shear and bulk viscosities

µ = −ρc2s∆t

(
1

λs
+

1

2

)
, µb = −ρc2s∆t

(
2
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3

)
, (S3)

where µ and µb denote the shear and bulk viscosities, respectively [1]. Other macroscopic quantities, such as ρ and
j, can be derived from the weighted sum of the density distribution function as follows:

ρ(r, t) =

19∑
i=1

ni(r, t), (S4)

j(r, t) =

19∑
i=1

nici +
1

2
f(r, t)∆t, (S5)

where f(r, t) is the external body force acting on the fluids. In this study, it is the restoring force of the membrane
as detailed below.
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Solid particle model. We employed the simple bounce-back scheme [1] to enforce the no-slip condition on the
translating sphere and the solid walls that enclose the simulation domain. The momentum exchange between fluids
and the solid sphere can be computed via the simple bounce-back scheme. The sphere positions were updated by
integrating its equations of motion using an implicit scheme [2].

Membrane model. The membrane surface was discretized by a network composed of Nv vertexes, Nb bonds, and
Nf triangular faces, where Nv = 2562, Nb = 7680, and Nf = 5120. The bending resistance was modeled by the
bending energy

Eb =

Nb∑
i=1

kb [1− cos(θi − θ0)] , (S6)

where kb is the model bending constant, θi and θ0 are the dynamic and rest dihedral angles between two triangular
patches on the discretized membrane surface, respectively. The relation between kb and the bending rigidity kc of the
Helfrich model is given by kb = 2kc/

√
3 [3]. To model the area incompressibility of the membrane, we imposed the

area conservation constraint as follows:

Ea =
ka(A−A0)

2

2A0
+

Nf∑
i=1

kl(ai − a0,i)
2

2a0
, (S7)

where ai and a0,i are the dynamic and rest areas of each triangular face, respectively. Similarly, A and A0 are the
dynamic and rest areas of the membrane, respectively. The constants ka and kl control the strength of these area
constraint forces. To prevent the enclosed volume drifts from its initial value V0, we also applied a volume conservation
constrain

Ev =
kv(V − V0)

2

2V0
, (S8)

where kv is the constraint strength. V denotes the enclosed volume. In addition to the aforementioned potentials,
we also applied a tethering potential Es on each bond of the discretization network. Therefore, our model resembles
an enclosed polymerized membrane. Es comprises an attraction (Eatt) and a repulsive (Erep) interactions: Es =
Eatt + Erep, with

Eatt =

Nb∑
i=1

kBT lm(3ξ2i − 2ξ3i )

4p(1− ξi)
, (S9)

where ξi = li/lm with the bond length l and the maximum bond length lm, 0 < ξi < 1, p is the persistence length,
and kBT is the energy unit, and

Erep =

Nb∑
j=1

kp
lj
, (S10)

where kp is a force constant. The relation between these discrete model parameters and the macroscopic properties of
this polymerized membrane model can be found in [4]. The total force fj acting on each membrane vertex is obtained

from fj = − ∂E
∂xj

, where E = Eb + Ea + Ev + Es, and from fj , the external body force f(r, t) can be calculated.

The position of the membrane vertex was then updated by the Adams–Bashforth method. The coupling between the
membrane and the fluids was realized by the immersed boundary method with a two-point stencil [5].

In the simulation, a constant force of 4.85 pN was applied to the solid sphere based on the predicted magnetic
field density. High bending and shear moduli were employed in the simulations to replicate the largely undeformed
membrane shapes observed in experiments. The parameters of the membrane model used in the simulations are listed
in Table S1.
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Symbol Parameter Value

kc bending constant 1.47× 10−16 N ·m
ka global area constraint 4.72× 10−4 N/m

kl local area constraint 4.72× 10−4 N/m

kv volume constraint 9.50× 102 N/m2

G shear modulus 10−4 N/m

TABLE S1. Membrane model parameters. The connection between the macroscopic characteristics and the model parameters
can be found in [4].

Supporting Movies

Movie S1. The movie (played at 4X speed) shows the motion of a magGUV containing 1000 mM sucrose and 20 mM
of a photosensitizer HPTS in an external isomolar 1020 mM sucrose solution. Following light-triggered asymmetric
oxidation, magGUV explodes, releasing the inner contents as well as the encapsulated magnetic microparticle. The
scale bar represents 20 µm.
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