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Experimental Methods

Materials

Fluorescent silica NPs (Sicastar-greenF, plain) of 200 nm diameter were obtained from 
Micromod Partikeltechnologie GmbH. 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 
and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), extrusion filter supports (10mm) 
and PC membranes for extrusion were purchased from Avanti Polar lipids. DOPE-CAGE635 
was obtained from Aberrior GmbH. 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
(HEPES) buffer (1 M) was obtained from Thermo Fischer Scientific. Sodium chloride (NaCl) 
was obtained from Sanal. Chloroform was purchased from Merck Life Science. Gold 
nanoparticles (100 nm) were purchased from Nanopartz. 

Synthesis of SSLB 

The synthesis of SSLB was performed as described by Giakoumatos et al1,2. Briefly, small 
unilamellar DOPC or DPPC vesicles were formed via thin film hydration and extrusion. 
Therefore, 195 µl DOPC or DPPC lipid stock dissolved at 10 mM in chloroform were mixed 
with 10 µl DOPE-CAGE635 lipid dissolved at 10 µM in chloroform (final concentration 500 
nM DOPE-CAGE635) and added to a glass vial, where the chloroform solvent was evaporated 
under continuous vortexing and a nitrogen stream. A lipid thin film was formed on the glass 
vial walls after all the chloroform evaporated. The lipid film was rehydrated using 1 ml of 10 
mM HEPES and 50 mM NaCl buffer (pH 7.4) that was heated above the melting temperature 
of the lipids (25°C for DOPC and 60°C for DPPC) and vortexed for 2 minutes. The resulting 
vesicle suspension was extruded using an Avanti Mini Extruder 21 times through a 200 nm 
filter, 21 times through a 100 nm filter and 21 times through a 50 nm filter above the respective 
melting temperatures of the lipids. For DPPC vesicles, the final extrusion step with the 50 nm 
filter was performed for 41 extrusion steps. Next, SSLB were formed the same day by mixing 
400 µl of vesicle suspension, 20 µl of Sicastar Silica Nanoparticles (stock 50 mg/ml) and 980 
µl 10 mM HEPES and 50 mM NaCl buffer for 1 h above the melting temperature of the lipids 
under shaking in a ThermoMixer®. Finally, SSLBs were washed thrice via centrifugation at 
16000 g for 15 minutes to remove free lipid vesicles and redispersed in 10 mM HEPES and 50 
mM NaCl. SSLB were stored at 4°C and used within one week. 

MINFLUX imaging

SSLBs were imaged on an ibidi 8-well glass bottom µ-Slide. For active sample stabilization, 
200 nm spherical gold nanoparticles (Nanopartz, #A11-200-CIT-DIH-1-10) were added to the 
imaging well. MINFLUX tracking was performed on an Abberior MINFLUX microscope 
(Abberior, Goettingen, Germany) equipped with a Olympus 1.4 NA 100× Oil objective lens as 
previously described3. Single particle tracks were acquired in MINFLUX 3D-tracking mode 
using a 642 nm excitation laser (21.8 μW). Laser powers were measured at the position of the 
objective back focal plane using a Thorlabs PM100D power meter equipped with a S120C 
sensor head. The imaged fields of view were approximately 20x20 µm, with an average 
duration of 30-45 minutes for one measurement. Valid localizations were recorded when a 
minimum of 100 photons in the last iteration were detected. Localizations were considered 
invalid and filtered out when a second fluorophore was detected in the same detection volume 
and when the fluorophore failed to be localized in 4 consecutive probing steps. Analysis of the 
collected localizations was performed using a custom MATLAB script. 



MINFLUX Analysis

We used a custom data processing and analysis workflow to analyze the lipid mobility on 
silicon nanoparticles. Trajectories from fluorescent molecules are pre-processed and 
reconstructed from MINFLUX data, to quantify the underline diffusion properties, as a readout 
of the lipid mobility. The pre-processing, reconstruction, and visualization of the MINFLUX 
tracking data are all done through custom written MATLAB scripts and GUI tools.

In the first pre-process step, we performed a set of filtering to the MINFLUX raw data to 
remove noise and data that was not suitable for processing. We start with the raw data that was 
exported to MATLAB data (.mat) format. MINFLUX gathered tracking results into groups and 
assigned unique ID to each track, denoted as ‘tid’. The ‘tid’ attribute is assigned to every 
localization as part of the raw data. Therefore, we first extracted 3D coordinates, their time 
stamp, and associated ‘tid’ of all valid localizations from MINFLUX raw data for pre-
processing. 

The pre-processing on the raw data basically consists of two steps: A first filtering step, 
followed by a clustering step. 

We did little spatial filtering on the localization data, by removing data located near the border 
(within 1% of the border) of the XY field of view. To ensure the completeness of tracking data 
at this stage, the filtering is on track level. It means if any data point falls into the 1% marginal 
region, an entire track containing that data point is discarded. 

At this stage, we also correct for refractive index mismatch4,5 (RIM), to compensate for the 
axial aberration. To do this, we measured and equalized the spatial spread in each axis for every 
track. For a given trace, we compute first the interquartile range (iqr) between 25% and 75% 
percentile of X, Y, and Z axis of the data. And then we calculate the ratio of XY geometrical 
mean over Z iqr value, as the RIM score for each track. Finally, we calculated a weighted mean 
of the RIM scores from all the tracks, based on the number of data points within each track, to 
generate the final RIM correction factor. The RIM correction factor is measured on a daily-
bases and applied to all tracking experiment in the same day. For the 3 consecutive days of 
imaging, we measured the RIM correction factors as 0.6232, 0.6388, and 0.6237 (Fig.3), 
indicating rather low variation of the axial aberration across days of imaging. 

Each MINFLUX tracking process takes roughly several tens of data point to stabilize. As a 
result, a lot of tracks exhibit a short tail-like portion in the beginning which reflects this initial 
targeting process. A given track ends normally when the tracking process slowly loses the being 
tracked molecule, which resulting in also relatively low-quality data at the end of tracks. 
Therefore, for each track we discarded 100 data points both from the beginning and at the end 
of the track. By visual inspection, this filtering procedure effectively removed the ‘tail-like’ 
portion of each track. Shorter tracks that contain no more than 200 data points are discarded at 
this step.

The time stamps for each localization were exported with effective precision in the range of 
several tens of microsecond. We extracted time intervals as the increment between time stamps 
of two adjacent localization events and rounded it to 0.1 millisecond (ms) precision for the 
MSD computation and diffusion analysis of this study. 

After filtering step, we then spatially clustered the processed data with density-based scan 
(DBSCAN). We make use of the track identity of the data, to cluster on the track level, rather 



than individual localization data points. This way, the clustering process has been speeded up 
significantly, while the computation workload has greatly reduced. We first calculated the 
centroid coordinates of all tracks. Then all the centroid coordinates are clustered such that any 
pair of track centroids located within a radius of 200 nm to each other will be clustered together. 
A cluster ID is then assigned to each data point, similarly as the track ID. Naturally, data 
belonging to the same track also belongs to the same cluster. 

We then fit a spherical shell to the clusters with the least square method. This fitting approach 
minimizes the residual sum of squared distance (error) of all points to the sphere surface. If the 
fitting error is too large, or the fitting result deviates much from expected geometry (e.g.: points 
form a plane rather than a 3D spherical surface), the fitting is considered failed. Clusters with 
failed fitting are marked but kept for down-stream diffusion analysis. This is because when two 
or more silicon cores are close to each other, nanoparticles imaged on their surface sometimes 
cannot be distinguished by spatial clustering. Such cases would result in a cluster with failed 
sphere fitting, but still contains meaningful data that can be visually categorized and further 
analyzed. Nevertheless, successful fitting results are also marked, and better fitting results with 
smaller fitting errors are sorted more to the front as good candidate for further inspection and 
analysis.

To analyze diffusion behavior, we compute mean squared displacement (MSD) and diffusion 
coefficient for each cluster. As mentioned above we extracted time interval (dt) between each 
adjacent localization and inspected its property. It is obvious that the time intervals from 
MINFLUX tracking experiment were not always consistent, and instead roughly segregated 
into several different levels (fig. 2E). These levels are in fact correspond to the 1, 2, 3, or more 
rounds of MINFLUX beam pattern scanning on the tracked molecule. Since more rounds of 
scanning are made only when previous round(s) failed to locate the molecule, larger time 
interval is also normally associated with larger uncertainty in localization. To account for this, 
we break a complete track from previous filtering steps into shorter track segments, around 
these large time intervals. We define a breaking criterion that only allows maximum 2 rounds 
of scanning within a given track segment. This is implemented by estimating the base level 
time interval minDt, which corresponds to only 1 round of scanning. We then set a threshold 
to the time intervals as 2.5 * minDt, to be the breaking criterion. This proven to be sufficient 
to effectively distinguish between 2 and 3 rounds scanning in the data. The track segments 
from all tracks belonging to a given cluster are stored and used in subsequent MSD 
computation.

To compute the MSD associated with each unique time interval, we used a modified version 
of msdanalyzer (https://tinevez.github.io/msdanalyzer), a designated MATLAB class to 
perform MSD computation and analysis. The main advantage of this package is it can deal with 
non-equidistant time intervals, which is better suited for our MINFLUX tracking data. We 
adopted a vectorized approach to save CPU time for the MSD computation in MATLAB, at 
the expense of RAM. With our code, the memory required to process a complete track segment 
consisting of ~ 40k data points would be roughly 128 Gb, as tested on a Windows 10 machine 
with MATLAB 2023b. However, given the average time interval from MINFLUX tracking 
data is in the range of several hundreds of microseconds, we haven’t encountered so far, any 
complete track segments contain more than 10k data points. In addition, for the objective of 
this study, we are mainly interested in the fast component of the diffusion behavior and as a 
result would not necessarily need the MSD computed from such long track segments. For each 
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track segment extracted in the last step, all possible time intervals, dt, are calculated. Then 
MSD values corresponding to each unique dt values are computed. The MSD and dt pairs are 
computed and stored for each track segment. We also computed cluster-wise weighted average 
values, with the same procedure that is described in msdanalyzer. Shortly paraphrasing, the 
weights are taken to be the number of averaged delay (time interval), which favors short delays. 

The diffusion coefficient can be calculated for each pair of MSD and dt as D = MSD / (2 * 
ndim * dt), with ndim being the dimensionality of the trajectory. Therefore, in the 3D tracking 
case, diffusion coefficient D is thus calculated as MSD / (6 * dt). 

The analysis results from the above filtering, clustering, sphere fitting, and MSD analysis steps 
are all stored and exported to MATLAB data file format. The result file can be loaded into 
MATLAB for data visualization and further analysis, or to be loaded with the custom data 
visualization tool that is created together with the analysis scripts.

To facilitate data visualization and further analysis, a GUI tool (Fig S.4) which generates 
MATLAB figures is also created, as part of the analysis workflow (Fig. 2). The first overview 
figure displays coordinates of the processed data as a 3D scatter plot. It enables data load, 
coloration, and data selection through custom designed buttons (Fig. 2A). The ’color’ toggles 
between 3 different color modes of the scatter plot: colored by track, colored by cluster, or 
colored by selected cluster, that is displaying in a second cluster view figure. The cluster view 
figure shows the selected cluster as a 3D scatter plot and uses different colors to differentiate 
different tracks belonging to the same cluster. If the sphere fitting was successful, a semi-
transparent sphere shell is generated based on the fitting parameters and overlay with the scatter 
plot (Fig. 2B). We made 6 subplots to further display the properties of the tracking data and 
tracking result. The 6 subplots are gathered in 2 groups: the top 3 subplots show displacement, 
velocity, and time-intervals against time; the bottom 3 subplots show the MSD vs. time interval 
plot, histogram of the diffusion coefficient, and cumulative frequency of the diffusion 
coefficient. A time slider is also implemented to highlight tracking data and values (in the top 
3 subplots) corresponding to the slider indicated time point.
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Supplementary Figures

Fig S.1: Multiple Si-DOPC SSLB systems (A) and Si-DPPC SSLB (B) systems as displayed 
within the custom GUI, showing both intra and inter particle variance. Furthermore, showing 
the difficulty to correctly identify the underlying Silica particle, due to the lack of mobility 
within the DPPC to traverse the full particle surface.



Fig S.2: The distance a tracked fluorophore moves between consecutive frames is measured as 
a point-to-point distance in 3D cartesian space, however systematically it is moving in 3D on 
a curved surface. As such there is an associated error between the measured distance c and the 
arc length which it moved on. To find this arc length, the average global step from the MSD is 
mapped onto the average radius of an acquired particle, from which the corresponding arc 
length is obtained. Comparing the arc length to the cartesian distance gives the associated error 
within the calculated MSD, which is found to be ca. 1%. 

Fig S.3: Refractive index mismatch correction: upper row, scatter plot of selected track for each day 
of acquisition; lower row, the same data after refractive index mismatch correction (z coordinate 
scaled by RIM correction factor).



Fig S.4: GUI demonstration. First the dataset is presented in the full area encompassing multiple 
particles. At this point the data is already clustered by DBSCAN, and the user can choose between 
three different visualizations: A) by cluster ID, i.e. the software will color-code with the same color 
all tracks belonging to the same nanoparticle; B) by trace ID, i.e. the software will assign to each 
track a different color. These two visualizations will help the user to choose a nanoparticle of 
interest. Our suggestion is to start with the trace ID visualization to assess the number of tracks per 
NP (ideally you want as many as possible to have more sampling) and then switch to the cluster ID to 
select the cluster of interest. Once a cluster is selected the interface show the cluster selected in red 
and the others in blue (see panel C). Once selected the cluster its analysis is highlighted (D). In this 
window the use can appreciate in the left panel the spatial distribution of the localization (color 

D)
)



coded per track) and the fit sphere in green. On the right the user can find six plots of relevant 
properties: i) displacement versus time, ii) instantaneous velocity; iii) time intervals; iv) Mean square 
displacement and v-vi) diffusion coefficient both in histogram and cumulative distribution. These 
provide a broad overview of the diffusion properties of the NP selected. As an extra feature it is 
possible to highlight only a part of the trajectory (pink selection in panel D) and correlate the spatial 
position of such localization on the left with the measured parameters on the right. This feature is 
very useful when a trajectory is not homogenous over time (e.g. change velocity due to a binding 
event or encounter an area of the sample with different properties) 


