ARTICLE

Supporting Information

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Metal-Organic Framework derived α -MnS MWCNT composite as a promising pseudocapacitive material in a flexible quasi-solid state asymmetric supercapacitor device

Mithun Sarkar,^a V.R. Siddhartha Sairam Kalahasti ^a and Prakash C. Ghosh ^{*a}

^a Department of Energy Science & Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.

* Corresponding author E-mail: pcghosh@iitb.ac.in

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Solvothermal Treatment Mn(NO₃)₂.4H₂O + MWCNT added into the activated sulfur solution

Activation of Sulfur

1 g Sulfur in 80 ml Water + 80 ml Ethylenediamine solution

Fig. S 1 Multi-point BET (a) α -MnS MWCNT (b) MOF-derived MnS MWCNT.

Fig. S 2 The assembles flexible asymmetric quasi-solid state supercapacitor device with the crocodile clip.

Table S 1 EIS circuit fitting parameters

	R _{ESR} /Ω	Y ₀ /S s ⁿ (EDLC)	n (EDLC)	R _{ct} /Ω	Y ₀ /S s ⁿ	n	χ²
α-MnS- MWCNT	5.875	0.004	0.653	2.625	0.05	0.934	7.949E-05
MOF-derived MnS MWCNT	5.511	0.012	0.568	0.71	0.051	0.782	3.521E-04
Ketjen Black EC-300j	3.499	0.002	0.776	1.398	0.078	0.954	6.397E-04
2-electrode study	6.555	0.006	0.62	2.51	0.049	0.933	3.259E-04