Supplemental Material for

Superior Mechanical and Thermal Properties of Oxygen Terminated Trigonal $Mo_2B_2\ MBenes$

Di Zhao,^a Mengqing Hu,^a Ming Zhou,^a Mingli Li,^a Lei Zhang,^a Oscar Allen,^a Irfan Ali Soomro,^a Samuel Akinlolu Ogunkunle,^a Liang Wang,^a Zhenzhen Wu,^a Porun Liu,^a Yuan Mei,^b Yun Wang^{a*}

^a School of Environment and Science, Griffith University, Gold Coast Campus, Southport

4222, Australia

- ^b CSIRO Mineral Resources, Kensington, WA 6151, Australia
- * Corresponding author: Yun Wang, <u>yun.wang@griffith.edu.au</u>

A. Computation Process of Elastic Module

This paragraph demonstrates the basic modelling strategy for mechanical properties, including the calculation of elastic modulus. The modelling process is initiated within the MedeA VASP GUI interface by selecting the "MT - Elastic Properties" calculation type, as illustrated in Figure S4(a). Subsequent workflow construction occurs through the flowchart interface, beginning with the integration of Mechanical Properties module. Strain parameters are systematically assigned through this interface to establish deformation matrices (Figure S4(b)). Following strain configuration, force computation parameters are systematically defined using the MedeA VASP toolkit, ensuring proper convergence criteria and computational accuracy (Figure S4(c)). Final workflow implementation incorporates the VASP HT flowchart (Figure S4(d)).

FIG. S1. The calculation of elastic modulus. (a) MedeA VASP GUI, (b) Mechanical properties module, (c) Flowchart interface, (d) VASP HT flowchart

B. Structural Properties of Mo₂B₂ and Mo₂B₂T₂ MBenes

FIG. S2. Top and side views of different configuration models of -O terminated Mo₂B₂ MBene systems. (a) hexagonal Mo₂B₂O₂ model 1, (b) hexagonal Mo₂B₂O₂ model 2, (c) hexagonal Mo₂B₂O₂ model 3, (d) orthorhombic Mo₂B₂O₂ model 1, (e) orthorhombic Mo₂B₂O₂ model 2, (f) trigonal Mo₂B₂O₂ model 1, and (g) trigonal Mo₂B₂O₂ model 2. The Mo, B and O atoms are marked in purple, green and red, respectively.

FIG. S3. Top and side views of different configuration models of -F terminated Mo₂B₂ MBene systems. (a) hexagonal Mo₂B₂F₂ model 1, (b) hexagonal Mo₂B₂F₂ model 2, (c) hexagonal Mo₂B₂F₂ model 3, (d) orthorhombic Mo₂B₂F₂ model 1, (e) orthorhombic Mo₂B₂F₂ model 2, (f) trigonal Mo₂B₂F₂ model 1, and (g) trigonal Mo₂B₂F₂ model 2. The Mo, B and F atoms are marked in purple, green and blue, respectively.

FIG. S4. Top and side views of different configuration models of -OH terminated Mo₂B₂ MBene systems. (a) hexagonal Mo₂B₂(OH)₂ model 1, (b) hexagonal Mo₂B₂(OH)₂ model 2, (c) hexagonal Mo₂B₂(OH)₂ model 3, (d) orthorhombic Mo₂B₂(OH)₂ model 1, (e) orthorhombic Mo₂B₂(OH)₂ model 2, (f) trigonal Mo₂B₂(OH)₂ model 1, and (g) trigonal Mo₂B₂(OH)₂ model 2. The Mo, B, O and H atoms are marked in purple, green, red and pink,

respectively.

Phase	C ₁₁	C ₁₂	C ₂₂	C ₆₆
hex	245	41	245	102
orth	193	65	210	72
tri	244	110	244	64

C. Calculated Elastic Constants TABLE SI. Calculated elastic constants of Mo₂B₂

TABLE SII. Calculated elastic constants of Mo₂B₂T₂-tri1

Т	C ₁₁	C ₁₂	C ₂₂	C ₆₆
F	229	147	227	45
0	357	150	357	106
OH	318	74	319	125

D. Phonon Dispersion of $Ti_3C_2O_2$

FIG. S5. Phonon dispersion of $Ti_3C_2O_2$