Supporting Information

Influence of substituted aromatics on the formation and stability of β-sheet-based peptide hydrogels

Jolien Bertouille,^a Jacinta F. White,^b Malisja de Vries,^b Kaat De Smet,^a Jizhen Zhang,^c James Gardiner,^b Niko Van den Brande,^d Wouter Herrebout,^e Ronnie G. Willaert,^f Charlotte Martin,^a Ulrich Hennecke^a and Steven Ballet^{a*}

^a Research Group of Organic Chemistry (ORGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

^b CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3169, Australia

^c Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia

^d Research group Sustainable Materials Engineering (SUME), lab of Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

^e Theory and Spectroscopy of Molecules and Materials, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium

^f Research Group Structural Biology Brussels and Alliance Research Group VUB-UGent NanoMicrobiology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium

Table of Contents

1.	Peptide synthesis	2
2.	UV-absorbance	3
3.	Rheology	3
4.	Microscopy	8
4.1.	Electron microscopy	8
4.1.	Atomic force microscopy	
4.2.	Fibril dimensions	

1. Peptide synthesis

 Table S1. Code, sequence, chemical formula, molecular weight, HRMS results and yield of all synthesized peptides.

	Sequence	Chemical formula	Molecular weight TFA salt (g/mol)	HR-MS (ESI+), m/z		Yield
Code				Calculated [M+H]+	Found [M+H]+	(%)
SBL-HG-063	H-FQFQFK-NH ₂	$C_{43}H_{58}N_{10}O_8$	1071.05	843.4512	843.4537	56
SBL-HG-092	H-FQFQF(4-NO ₂)K-NH ₂	C ₄₃ H ₅₇ N ₁₁ O ₁₀	1116.04	888.4363	888.4321	38
SBL-HG-273	H-F(4-NO ₂)QF(4-NO ₂)QF(4-NO ₂)K-NH ₂	$C_{43}H_{55}N_{13}O_{14}$	1206.04	978.4064	978.4088	31
SBL-HG-095	H-FQFQF(4-CN)K-NH ₂	$C_{44}H_{57}N_{11}O_8$	1096.06	868.4464	868.4423	22
SBL-HG-089	H-F(4-CN)QF(4-CN)QF(4-CN)K-NH ₂	$C_{46}H_{55}N_{13}O_8$	1146.08	918.4369	918.4367	35
SBL-HG-224	H-FQFQF(4-CF ₃)K-NH ₂	$C_{44}H_{57}F_3N_{10}O_8$	1139.04	911.4386	911.4103	48
SBL-HG-220	H-F(4-CF ₃)QF(4-CF ₃)QF(4-CF ₃)K-NH ₂	$C_{46}H_{55}F_9N_{10}O_8$	1275.04	1047.4133	1047.3789	45
SBL-HG-211	H-FQFQF(4-OMe)K-NH ₂	$C_{44}H_{60}N_{10}O_9$	1101.07	873.4618	873.4565	48
SBL-HG-090	H-F(4-OMe)QF(4-OMe)QF(4-OMe)K-NH ₂	$C_{46}H_{64}N_{10}O_{11}$	1161.12	933.4829	933.4850	51
SBL-HG-088	H-FQFQYK-NH ₂	$C_{43}H_{58}N_{10}O_9$	1087.04	859.4461	859.4445	63
SBL-HG-306	H-YQYQYK-NH ₂	$C_{43}H_{58}N_{10}O_{11}$	1119.04	891.4359	891.4398	45

2. UV-absorbance

Figure S1. UV-absorbance spectra for the 2% w/v hydrogels in physiological saline in the spectral range of 185-300 nm.

3. Rheology

Figure S2. Dynamic rheology of **SBL-HG-063** with storage modulus (left), loss modulus (middle) and phase angle (right) plotted as a function of time. The measurement was performed at 37°C, with a strain of 0.5% and oscillation frequency of 0.15 Hz. Colour shades represent replicate measurements.

Figure S3. Dynamic rheology of **SBL-HG-092** and **SBL-HG-273** with storage modulus (left), loss modulus (middle) and phase angle (right) plotted as a function of time. The measurement was performed at 37°C, with a strain of 0.5% and oscillation frequency of 0.15 Hz. Colour shades represent replicate measurements.

Figure S4. Dynamic rheology of **SBL-HG-095** and **SBL-HG-089** with storage modulus (left), loss modulus (middle) and phase angle (right) plotted as a function of time. The measurement was performed at 37°C, with a strain of 0.5% and oscillation frequency of 0.15 Hz. Colour shades represent replicate measurements.

Figure S5. Dynamic rheology of **SBL-HG-224** and **SBL-HG-220** with storage modulus (left), loss modulus (middle) and phase angle (right) plotted as a function of time. The measurement was performed at 37°C, with a strain of 0.5% and oscillation frequency of 0.15 Hz. Colour shades represent replicate measurements.

Figure S6. Dynamic rheology of **SBL-HG-211** and **SBL-HG-090** with storage modulus (left), loss modulus (middle) and phase angle (right) plotted as a function of time. The measurement was performed at 37°C, with a strain of 0.5% and oscillation frequency of 0.15 Hz. Colour shades represent replicate measurements.

Figure S7. Dynamic rheology of **SBL-HG-088** with storage modulus (left), loss modulus (middle) and phase angle (right) plotted as a function of time. The measurement was performed at 37°C, with a strain of 0.5% and oscillation frequency of 0.15 Hz. Colour shades represent replicate measurements.

4. Microscopy

4.1. Electron microscopy

Figure S8. Additional cryo-TEM and negatively stained TEM images. Scale bars represent 200 nm.

4.1. Atomic force microscopy

Figure S9. AFM height images (2D and 3D) of type 2 hydrogels at 0.2% w/v in physiological saline. The twisting handiness is indicated on the 3D images.

4.2. Fibril dimensions

Figure S10. Protofibril widths measured from the 0.2% w/v TEM images of all 10 peptides, mean ± SD shown beneath each histogram, n=100.

Figure S11. Fibril thickness of **SBL-HG-092**, **SBL-HG-095**, **SBL-HG-063** and **SBL-HG-088** with predominantly type 1 fibril networks. Measurements deducted from TEM images at 0.2% w/v, mean ± SD shown for each histogram.

Figure S12. Fibril thickness (red) and cross-over pitch (blue) of **SBL-HG-224**, **SBL-HG-273** and **SBL-HG-220** with predominantly type 2 fibril networks. Measurements deducted from AFM and TEM images at 0.2% w/v, mean ± SD shown for each histogram. For the dimensions on the AFM images, maximal heights of fibril cross-sections were employed.

Figure S13. Tape width of **SBL-HG-211**, **SBL-HG-090** and **SBL-HG-089** with predominantly type 3 fibril networks. Measurements deducted from TEM images at 0.2% w/v, mean ± SD shown for each histogram.