Supplementary Information for:

Time-lapsed nanoscale maps of the elastic modulus of collagen during cross-linking by bimodal AFM

Clara Garcia-Sacristan^a, Ricardo Garcia^a*

^aInstituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain

* Email: r.garcia@csic.es.

List of contents

- Figure S1. Elastic modulus maps of cross-linked collagen nanoribbons after three months of incubation time.
- Figure S2. Elastic maps of dry and wet collagen nanoribbons at 0 s of incubation time.

Fig. S1. Elastic maps of collagen nanoribbons crosslinked by ribose (top panel) or glutaraldehyde (bottom panel) after three months of incubation time. Young's modulus cross-section across the line marked in yellow. Additional bimodal AFM data: $f_1 = 439$ kHz, $k_1 = 0.108$ nN/nm, $Q_1 = 1.5$; $f_2 = 7.8$ MHz, $k_2 = 5.18$ nN/nm, $Q_2 = 2.8$; $A_{01} = 10$ nm, $A_{02} = 1.0$ nm.

Fig. S2. Elastic maps of dry and wet (in buffer) collagen nanoribbons at 0 s of incubation time and the corresponding cross section across the dashed lines. a) Elastic maps of dry collagen nanoribbons. The maps were obtained in 40% humidity and 27.3 °C by applying a peak force on the nanoribbons of 50 nN (100 nN on mica). Additional bimodal AFM data: $f_1 = 314$ kHz, $k_1 = 48$ nN/nm, $Q_1 = 600$; $f_2 = 1940$ kHz, $k_2 = 1844$ nN/nm, $Q_2 = 660$; $A_{01} = 110$ nm, $A_{02} = 1.2$ nm. b) Elastic maps of collagen nanoribbons in a buffer solution at 0 s of incubation time and the corresponding cross section. The maps were obtained in buffer by applying a peak force on the nanoribbons of 218 pN (15 nN on mica). Additional bimodal AFM data: $f_1 = 435$ kHz, $k_1 = 0.15$ nN/nm, $Q_1 = 1.5$; $f_2 = 7139$ kHz, $k_2 = 9.84$ nN/nm, $Q_2 = 3.6$; $A_{01} = 9$ nm, $A_{02} = 0.5$ nm.