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1. Rotational Effects Driven Structural Optimization 

Considering the dynamic nature of nucleoside drug molecules during translocation through the 

nanopore, we have considered possible rotations from 0° to 90° (in the steps of 30°) around the x-

axis in the yz-plane for each considered nucleoside drug molecule, as shown in Figure S1. In our 

investigation, each drug molecule is first placed in the plane with the nanopore device, considered 

as 0° configuration. We then rotated the drug molecule with respect to this orientation around the 

x-axis in the step of 30° and achieved configurations 30°, 60°, and 90°. To this end, we have four 

orientations for each nucleoside drug molecule, resulting in a total of 32 optimizations 

corresponding to 8 nucleoside drugs.  
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Figure S1: Representative orientations of 5-Azacytidine nucleoside drug inside the nanopore 
illustrated corresponding to in-plane rotations from 0° to 90° in the steps of 30° around the x-axis 
in the yz-plane. Atom color code: Au (yellow), C (brown), H (white), N (blue), F (purple), and O 
(red). 

After optimizing the considered drug molecules over the dynamic configuration space, we 

evaluated the relative energy values for each configuration, as shown in Table S1. The 

energetically most favorable configurations are chosen as the most likely geometry of nucleoside 

drug molecules during translocation through the nanopore. 
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Table S1. Relative energies (in eV) of the nanopore-drug systems when nucleoside drug molecules 
are interacting with the nanopore edges in different orientations (0°, 30°, 60°, 90°), as shown in 
Figure S1.

S.No. Nucleoside Drugs 0° 30° 60° 90°
1. 5-Azacytidine 0.21 0.21 0.00 0.04

2. 5-Fluorouridine 0.17 0.13 0.09 0.00

3. 6-Azauridine 0.00 0.07 0.14 0.02

4. GS-441524 0.54 0.4 0.00 0.28

5. Loxoribine 0.52 0.01 0.20 0.00

6. Mizoribine 0.08 0.01 0.00 0.02

7. Ribavirin 0.24 0.30 0.00 0.12

8. Zebularine 1.17 0.01 0.00 0.31
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2. Nanopore Transmission Readouts for the Most Likely Configuration

Figure S2. Nanopore transmission readouts for the most likely configuration of nanopore-
nucleoside drug systems in the energy window of  to  eV. This selected energy window ‒ 3.5 + 3.5
allows for the detection of subtle changes in transmission values across a wider energy range, 
encompassing both valance and conduction bands. The most likely configuration of nucleoside 
drugs inside the nanopore is shown in the respective inset. Atom color code: Au (yellow), C 
(brown), H (white), N (blue), F (purple), and O (red).
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3. Impact of Orientational Fluctuations 

To study the impact of orientational fluctuations on transmission fingerprints, we have performed 

electronic transport calculations over a large dynamic configuration space including both in-plane 

and out-of-plane orientational fluctuations. In our analysis, to mimic the in-plane rotation 

dynamics of drug molecules, we have considered a total of four orientations (0°, 30°, 60°, 90°) as 

shown in Figure S3a and to mimic the out-of-plane translation dynamics, we considered two 

configurations (+1.0 Å and -1.0 Å) as shown in Figure S3b. To address the effect of out-of-plane 

translation dynamics, we have translated the drug molecule in both upward (+1.0 Å) and 

downward (-1.0 Å) directions from the initial position (0.0 Å) along the x-axis in the yz-plane.

Figure S3: (a) Representative orientations of 5-Azacytidine nucleoside drug inside the nanopore 
illustrated corresponding to rotation from 0° to 90° (in the step of 30°) around the x-axis in the yz-
plane and (b) representation of 5-Azacytidine nucleoside drug translated out-of-plane along the x-
axis in the yz-plane, in both positive and negative directions by ± 1.0 Å. Atom color code: Au 
(yellow), C (brown), H (white), N (blue), F (purple), and O (red).
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4. Rotation and Translation Dynamics with Molecular Orbital Wavefunctions 

Figure S4. (a) Nanopore transmission readouts of nanopore-nucleoside drug systems in the energy 
window of  to  eV with different rotation and translation dynamics. The configurations ‒ 3.5 + 3.5
undergoing rotational fluctuations are represented as O1, O2, O3, and O4 corresponding to 
rotations 0°, 30°, 60°, and 90°, respectively, and those with translational fluctuations are 
represented as O5 and O6 corresponding to translations +1.0 Å and -1.0 Å, respectively and (b) 
isosurface plots (isosurface value is 0.005 e/Å3) of the molecular orbitals (MOs) responsible for 
the sharp transmission peaks of nanopore-nucleoside drug systems. The negative and positive 
lobes are shown in blue and red colors, respectively. Atom color code: Au (yellow), C (brown), H 
(white), N (blue), F (purple), and O (red).
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5. Features Selection for Supervised Machine Learning Framework 

In our pursuit of building a generalized ML framework, our emphasis lies in the careful selection 

of features derived from the transmission-energy profiles of nucleoside drugs. Recognizing the 

profound correlation between transmission and energy, a total of 13 features have been selected 

(refer to Table S2). These chosen features exhibit a substantial correlation with the nucleoside 

drug, forming a crucial foundation for the efficiency of our approach. 

Table S2. A detailed description of the input features selected for supervised machine learning.

S.No. Features Description

1. F1 Transmission (T)

2. F2
 , where  is the maximum transmission value

𝑇
𝑇𝑚𝑎𝑥 𝑇𝑚𝑎𝑥

3. F3
 , where  is the minimum transmission value

𝑇
𝑇𝑚𝑖𝑛 𝑇𝑚𝑖𝑛

4. F4
 , where  is the average transmission value

𝑇
𝑇𝑎𝑣𝑔 𝑇𝑎𝑣𝑔

5. F5 Height (H); Difference between transmission values of two consecutive 
transmission peaks

6. F6 Levels (L), Ratio of transmission values of two consecutive transmission 
peaks

7. F7
; Height normalized transmission values

𝑇
𝐻𝑒𝑖𝑔ℎ𝑡

8. F8
; Level normalized transmission values

𝑇
𝐿𝑒𝑣𝑒𝑙

9. F9
 ; Transmission normalized energy values

𝐸
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛

10. F10
 ; Height normalized energy values

𝐸
𝐻𝑒𝑖𝑔ℎ𝑡

11. F11
 ; Level normalized energy values

𝐸
𝐿𝑒𝑣𝑒𝑙

12. F12
 ; Ratio of energy values and height normalized transmission 

𝐸
𝑇/𝐻𝑒𝑖𝑔ℎ𝑡
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values

13. F13  ; Ratio of energy values and Level normalized transmission 

𝐸
𝑇/𝐿𝑒𝑣𝑒𝑙

values

6. Spearman’s Rank Correlation Matrix

Figure S5. Spearman’s rank correlation matrix illustrating Spearman’s rank correlation 
coefficients (SCCs) between each possible pair of selected input feature vectors. A coefficient 
close to 1, -1, and 0 indicates a strong positive, strong negative, and weak or no monotonic 
relationship between the features, respectively. 
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7. Pearson’s Correlation Matrix

Figure S6. Pearson’s correlation matrix illustrating standard Pearson’s correlation coefficients 
(PCCs) among selected input feature vectors, offering a detailed perspective on the linear 
relationships between each pair. A coefficient close to 1, -1, and 0 indicates a strong positive, 
strong negative, and weak or no linear correlation between the input features. 
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8. Details of Tuned Hyperparameters 

Table S3. Tuned hyperparameters for selected supervised ML classification algorithms. 
Hyperparameter tuning has been performed by employing the Randomized Search CV, as 
implemented in the scikit-learn package. 

S.No. ML Algorithms Optimized Hyperparameters

1. Random Forest 
Classification (RFC)

n_estimators= 100, random_state=400, min_samples_split= 
2, min_samples_leaf= 1, max_features= None, max_depth= 
32, criterion='entropy'

2. Decision Tree 
Classification (DTC)

criterion='entropy',max_features=None,random_state=292, 
min_samples_split= 2, min_samples_leaf= 1, max_depth= 
32

3. K-Nearest Neighbor 
Classification (KNN)

n_neighbors= 18, weights='uniform', metric='euclidean', 
p=2

4. Logistic Regression (LR) penalty= 'none', solver= 'newton-cg', max_iter= 200, C=30, 
random_state=42

5. Support Vector Machine 
Classification (SVM)

C=1000, cache_size=200, decision_function_shape='ovr', 
degree=5, gamma='scale', kernel='poly', max_iter=-1, 
shrinking=True, tol=0.001

6.
Extreme Gradient 
Boosting Classification 
(XGBC)

subsample= 1, objective= 'multi:softmax', num_class= 8, 
n_estimators= 1000, min_child_weight= 1, max_depth= 4, 
learning_rate= 0.3, gamma= 0.0001, colsample_bytree= 1.0

7. Naive Bayes 
Classification (NBC) priors=None, var_smoothing=0.05

8. AdaBoost Classification 
(ADBC)

Base_estimator = DecisionTreeClassifier() , n_estimators= 
200,  learning_rate= 0.1
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9. Train and Validation Accuracy 

Figure S7. Train and test accuracy (%) for selected supervised ML classification algorithms, RFC, 
DTC, KNN, LR, SVM, XGBC, NBC, and ADBC. 
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10. 10-Fold Cross-Validation 

Table S4. Mean and validation accuracy for each fold of 10-fold cross-validation using the 
optimized ML models, RFC, DTC, KNN, LR, SVM, XGBC, NBC, and ADBC.

Fold RFC DTC KNN LR SVM XGBC NBC ADBC

1 89.3 84.0 27.8 43.8 25.5 85.8 24.8 85.0

2 90.8 87.8 33.8 48.3 28.5 86.8 22.0 87.3

3 88.8 88.3 28.3 46.0 26.0 87.0 26.3 85.3

4 90.3 87.3 32.3 51.8 26.3 86.0 22.0 83.5

5 88.5 86.5 31.3 45.0 28.3 85.3 22.5 83.8

6 88.8 82.3 33.5 48.8 28.5 84.0 24.3 80.0

7 88.8 84.0 32.0 38.0 23.5 85.5 21.5 85.3

8 88.8 86.3 29.5 48.5 27.0 84.0 20.3 85.3

9 88.8 85.3 34.5 45.5 28.8 86.0 27.5 85.5

10 91.3 86.8 34.0 49.0 28.5 86.8 28.0 86.8

Mean 
Accuracy  ±

Standard 
Deviation

8
9.4 ± 1.0

8
5.8 ± 1.9

3
1.7 ± 2.4

4
6.5 ± 3.8

2
7.1 ± 1.8

8
5.7 ± 1.1

23.9
± 2.7

84.8
± 2.3

Validation 
Accuracy 90.2 86.9 32.8 49.0 27.2 85.7 25.0 85.2
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11. HOMO Energy Values 

Table S5. HOMO energy values (in a.u.) of the nucleoside drug molecules.

S.No. Nucleoside Drugs HOMO (a.u.)
1. 5-Azacytidine -0.27

2. 5-Fluorouridine -0.26

3. 6-Azauridine -0.27

4. GS-441524 -0.24

5. Loxoribine -0.21

6. Mizoribine -0.22

7. Ribavirin -0.27

8. Zebularine -0.26



S-14

12. ML Calling of Nucleoside Drugs in 0° Configuration 

Figure S8. (a) Confusion matrix for RFC_1 calling of nucleoside drugs in the 0° configuration 
inside the nanopore, (b) receiver operating characteristic (ROC) curve illustrating the performance 
of RFC algorithm in distinguishing different classes of nucleoside drugs, and (c) classification 
report enclosing parameters precision, recall, and f1-score. 
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13. ML Calling of Nucleoside Drugs in 30° Configuration 

Figure S9. (a) Confusion matrix for RFC_2 calling of nucleoside drugs in the 30° configuration 
inside the nanopore, (b) receiver operating characteristic (ROC) curve illustrating the performance 
of RFC algorithm in distinguishing different classes of nucleoside drugs, and (c) classification 
report enclosing parameters precision, recall, and f1-score. 
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14. ML Calling of Nucleoside Drugs in 60° Configuration 

Figure S10. (a) Confusion matrix for RFC_3 calling of nucleoside drugs in the 60° configuration 
inside the nanopore, (b) receiver operating characteristic (ROC) curve illustrating the performance 
of RFC algorithm in distinguishing different classes of nucleoside drugs, and (c) classification 
report enclosing parameters precision, recall, and f1-score. 
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15. ML Calling of Nucleoside Drugs in 90° Configuration 

Figure S11. (a) Confusion matrix for RFC_4 calling of nucleoside drugs in the 90° configuration 
inside the nanopore, (b) receiver operating characteristic (ROC) curve illustrating the performance 
of RFC algorithm in distinguishing different classes of nucleoside drugs, and (c) classification 
report enclosing parameters precision, recall, and f1-score. 
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16. ML Calling of Nucleoside Drugs in +1.0 Å Configuration 

Figure S12. (a) Confusion matrix for RFC_5 calling of nucleoside drugs in the +1.0 Å 
configuration inside the nanopore, (b) receiver operating characteristic (ROC) curve illustrating 
the performance of RFC algorithm in distinguishing different classes of nucleoside drugs, and (c) 
classification report enclosing parameters precision, recall, and f1-score. 
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17. ML Calling of Nucleoside Drugs in -1.0 Å Configuration 

Figure S13. (a) Confusion matrix for RFC_6 calling of nucleoside drugs in the -1.0 Å 
configuration inside the nanopore, (b) receiver operating characteristic (ROC) curve illustrating 
the performance of RFC algorithm in distinguishing different classes of nucleoside drugs, and (c) 
classification report enclosing parameters precision, recall, and f1-score. 
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18. 10-Fold Cross-Validation 

Table S6. Mean and validation accuracy for each fold of 10-fold cross-validation using the 
algorithms, RFC_1, RFC_2, RFC_3, RFC_4, RFC_5, RFC_6 for calling nucleoside drugs in 
configurations 0°, 30°, 60°, 90°, +1.0 Å and 1.0 Å, respectively.‒

Fold RFC_1 RFC_2 RFC_3 RFC_4 RFC_5 RFC_6 

1 80.5 83.0 91.3 82.8 74.0 79.0

2 81.8 85.0 89.5 88.3 77.8 77.5

3 83.5 88.3 90.0 88.5 80.0 78.8

4 78.3 82.8 89.3 83.3 78.8 76.5

5 81.8 86.5 88.3 86.8 80.0 78.5

6 79.0 85.0 87.8 87.5 77.8        
79.3

7 80.5 81.0 87.8 86.5 73.8 78.5

8 76.3 87.0 87.8 87.3 79.8 75.5

9 79.3 84.3 86.0 84.8 79.5 80.3

10 82.0 86.0 89.8 87.3 73.3 74.8
Mean Accuracy  ±
Standard Deviation

8
0.3 ± 2.1

8
4.9 ± 2.2

8
8.7 ± 1.5

8
6.3 ± 2.0

7
7.5 ± 2.8

7
7.9 ± 1.8

Test Accuracy 81.9 86.0 88.3 87.2 77.4 77.6
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19. Interpretability of ML Calling in 0° Configuration 

Figure S14. (a) Global permutation feature importance plot, (b) mutual information feature 
importance plot, (c) SHAP summary bar plot illustrating the contribution of each input feature in 
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the prediction of an individual drug class, (d) SHAP beeswarm plot illustrating the contribution of 
each feature toward every prediction made by the algorithm, and (e) SHAP summary force plot 
illustrating the contribution of input features toward a single prediction.

20. Interpretability of ML Calling in 30° Configuration 

Figure S15. (a) Global permutation feature importance plot, (b) mutual information feature 
importance plot, (c) SHAP summary bar plot illustrating the contribution of each input feature in 
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the prediction of an individual drug class, (d) SHAP beeswarm plot illustrating the contribution of 
each feature toward every prediction made by the algorithm, and (e) SHAP summary force plot 
illustrating the contribution of input features toward a single prediction.

21. Interpretability of ML Calling in 60° Configuration 
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Figure S16. (a) Global permutation feature importance plot, (b) mutual information feature 
importance plot, (c) SHAP summary bar plot illustrating the contribution of each input feature in 
the prediction of an individual drug class, (d) SHAP beeswarm plot illustrating the contribution of 
each feature toward every prediction made by the algorithm, and (e) SHAP summary force plot 
illustrating the contribution of input features toward a single prediction.

22. Interpretability of ML Calling in 90° Configuration 
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Figure S17. (a) Global permutation feature importance plot, (b) mutual information feature 
importance plot, (c) SHAP summary bar plot illustrating the contribution of each input feature in 
the prediction of an individual drug class, (d) SHAP beeswarm plot illustrating the contribution of 
each feature toward every prediction made by the algorithm, and (e) SHAP summary force plot 
illustrating the contribution of input features toward a single prediction.

23. Interpretability of ML Calling in +1.0 Å Configuration 
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Figure S18. (a) Global permutation feature importance plot, (b) mutual information feature 
importance plot, (c) SHAP summary bar plot illustrating the contribution of each input feature in 
the prediction of an individual drug class, (d) SHAP beeswarm plot illustrating the contribution of 
each feature toward every prediction made by the algorithm, and (e) SHAP summary force plot 
illustrating the contribution of input features toward a single prediction.

24. Interpretability of ML Calling in -1.0 Å Configuration 
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Figure S19. (a) Global permutation feature importance plot, (b) mutual information feature 
importance plot, (c) SHAP summary bar plot illustrating the contribution of each input feature in 
the prediction of an individual drug class, (d) SHAP beeswarm plot illustrating the contribution of 
each feature toward every prediction made by the algorithm, and (e) SHAP summary force plot 
illustrating the contribution of input features toward a single prediction.

25. Unsupervised ML Algorithms and Tuned Hyperparameters

Table S7. A detailed description of optimized hyperparameters for selected unsupervised ML 
algorithms.

S.No. ML Algorithms Optimized Hyperparameters

1. K-Means Clustering
n_clusters=8, init='k-means++’, n_init=10, max_iter=300, 
tol=0.0001, verbose=0, random_state=None, copy_x=True, 

algorithm='auto'

2.
Hierarchical 

Agglomerative 
Clustering

n_clusters=8, linkage='ward'

3. DBSCAN Clustering eps=0.5, min_samples=5

4. MeanShift Clustering bandwidth=0.4

5. BIRCH Clustering branching_factor = 50, threshold=0.5, n_clusters=8

6. Gaussian Mixture 
Clustering n_components=4, random_state=0



S-28

26. Unsupervised ML Clustering

Figure S20. Clustering performance of unsupervised ML algorithms, hierarchical agglomerative 
clustering, DBSCAN clustering, meanshift clustering, BIRCH clustering, and gaussian mixture 
clustering to identify the nanopore events of 8 nucleoside drugs.
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26. Unsupervised Performance Metrics Evaluation

Table S8. Performance metrics evaluation for selected unsupervised ML algorithms.

S.No. Unsupervised ML 
Algorithms

Silhouette 
Score

Davies-Bouldin 
Score

Calinski-Harabasz 
Score

1. K-Means Clustering 0.57 0.47 28021.7

2. Hierarchical Agglomerative 
Clustering 0.51 0.49 22090.5

5. BIRCH Clustering 0.51 0.49 22090.5


