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Experimental section: 

2.1. Chemicals and materials 

In this research, Melamine (MA, C3H6N6, 99%), Hydrogen peroxide (H2O2, 30%) 

and Acetonitrile (C2H3N, 99%) were provided by Beijing Inno Chem Science & 

Technology Co., Ltd. Tetracycline (C22H24N2O8, abbreviated as TC, 98%) and 

chloroplatinic acid hydrate (H2PtCl6•6H2O, 99.9%) were purchased from Aladdin. 

Triethanolamine (C6H15NO3, 99%), L-Ascorbic acid (C6H8O6, 99%), and isopropanol 

(C3H8O, 99%) were purchased from Macklin Co., ltd. All other chemical reagents 

involved were of analytical grade and employed without further purification. 

Meanwhile, deionized water (>18.2 MΩ•cm) was obtained from a Milli-pore Milli-Q 

system (High-tech, Shanghai) and used throughout the experiments.  

All instruments and characterisations adopted in this experiment are detailed in 

the “Supporting Information” section. 

2.2 Measurement and Characterization 

The crystal phase, photoelectric properties, elemental compositions, and 

morphologies were performed using an X-ray diffraction (XRD) spectroscope (Bruker 

D8 ADVANCE), UV–vis spectroscopy (JP Shimadzu Co., Ltd), scanning electron 

microscope (SEM) (Mira 4, Tescan) with energy-dispersed spectroscopy (EDS, 

Oxford Ultim Max65), and X-ray photoelectron spectroscopy (XPS) (250Xi, Thermo 

Fisher). Fourier transform infrared spectra (FT-IR) were analyzed by Thermo 

Scientific Nicolet iS20. The specific surface areas were determined with a surface 

area analyzer (ASAP 2020 Micropore System, Micromeritics Instrument Corporation, 

USA) by the Brunauer-Emmett-Teller (BET) method. Steady-state photoluminescence 

(PL) and time-resolved photoluminescence (TRPL) spectra were recorded using a 

spectroscopic instrument (FLS1000, Edinburgh Instruments Ltd., UK) with an 

excitation wavelength of 375 nm at room temperature. A 375 nm laser in 

timecorrelated single-photon counting (TCSPC) mode was used to measure the decay 

lifetime of the PL spectra. The generation of superoxide radicals (•O₂⁻) was verified 

by electron paramagnetic resonance EPR (Bruker E500, Bruker BioSpin GmbH) 
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measurements using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as the spin-trapping 

agent. 

Photoelectrochemical Measurement: Photoelectrochemical tests were conducted 

in a conventional three-electrode cell at room temperature and pressure using an 

electrochemical workstation (CHI660D, Shanghai, China). The electrolyte used was 

0.5 M Na2SO4, with the Ag/AgCl reference electrode, the Pt counter electrode, and 

the working electrode of the samples under investigation. 2 mg of the sample was 

added to 180 μL of ethanol and 20 μL of Nafion and mix with ultrasound. The 

solution was mixed and drop-cast onto FTO glass with a fixed area (1 cm2). The 

electrode was dried to obtain the working electrode for subsequent testing. Transient 

photocurrent measurements were recorded at a potential of 0.4 V (versus Ag/AgCl) 

under irradiation from a 300 W xenon lamp equipped with a simulated solar filter. 

Photocatalytic hydrogen evolution from water splitting: In the photodeposition 

process of Pt (0.5 wt %) on the sample, 40 mg of the sample was dispersed through 

ultrasonication in a methyl alcohol aqueous solution (Vwater:Vmethanol=55 mL : 15 mL) 

within a reaction cell. Subsequently, a solution of H2PtCl6·6H2O at a concentration of 

0.5 M was added to the reaction cell. The system was then connected to the evaluation 

system. The evaluation of photocatalytic overall water splitting performance, was 

conducted in a closed gas circulation system equipped with an 

overhead-irradiation-type glass vessel. Prior to each test, all the air should be removed 

and 1 kPa Ar was injected for facilitating the detection of little generated gases. A 300 

W Xe lamp was adopted as the irradiation source (equipped with a 420 nm cut-off 

filter). During each reaction, the suspension was kept at 25 °C, and the evolved gases 

were analyzed by gas chromatography (GC-2014c). 
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Fig S1. The EDX element distribution mapping of C、N and O in OCN 
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Table S1. Element content table of OCN 

Element Wt% Wt% Sigma At% 

C 51.09 0.36 55.6 

N 38.32 0.40 35.76 

O 10.59 0.20 8.65 

total 100.00  100.00 
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Fig S2. Photocatalytic degradation of TC by OCN synthesized with different amounts of 

hydrogen peroxide 
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Fig S3. Photocatalytic degradation of tetracycline by pH of different solutions 
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Fig S4. Photocatalytic degradation of tetracycline by catalysts of different quality 
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Fig S5. Photocatalytic degradation of tetracycline at different mass concentrations 

 

 

 

 

 

 

 

 

 

  



 

S11 
 

Table S2. Comparison of photocatalytic degradation efficiency of tetracycline with 

OCN and other g-C3N4 samples 

Catalyst 
Dosage

（mg） 
Light source 

Initial 

amount 

Time

（min） 

Removal

（%） 

GG-N[1] 2000 100W UV 
mercury lamp 50 mg/L 180 91.57 

Ag/g-C3N4
[2] 50 300W, Xenon 

（λ≥ 420 nm） 20 mg/L 120 83 

BiVO4/g-C3N4
[3] 20 300W, Xenon 

 20 mg/L 60 56 

CeNCN[4] 10 300W, Xenon 
（λ≥420 nm） 

10 mg/L 60 80.09 

pg-C3N5 [5] 40 300W, Xenon 
（λ≥420 nm） 

30 mg/L 60 83 

OCN 10 300W, Xenon 
（λ≥ 420 nm） 20 mg/L 60 87.7 
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Fig S6. Stability experiments of photocatalytic degradation of tetracycline of OCN 
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Fig S7. XRD patterns after cycles of OCN 
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Fig S8. SEM images of OCN after cycles 
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Fig S9. The rate of hydrogen production from photocatalytic water.  
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