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S1: Characterization details

A Horiba Jobin—Yvon Raman spectrometer with a 633 nm excitation laser was used to record
the Raman spectrum of all the electrodes. A Rigaku X-ray diffractometer (Cu K, radiation of
1.54 A wavelength) was used for X-ray diffraction (XRD) of all the electrodes. A Supra 55
Zeiss scanning electron microscopy (SEM) was used for surface morphology and elemental
distribution X-ray (EDX) mapping of all the electrodes. Instrument: X-ray photoelectron
spectroscopy (XPS, PHI 5000 VersaProbe II, ULVAC-PHI Inc., USA) equipped with micro-
focused (100 pm, 15 kV) monochromatic Al-Ka X-Ray source (hv = 1486.6 ¢V). Both survey
spectra and narrow scans (high-resolution spectra) were recorded. Survey scans were
recorded with an X-ray source power of S0W and pass energy of 187.85 eV. High-resolution
spectra of the major elements were recorded at 46.95 eV pass energy. XPS data were
processed using PHI's Multipak software. The binding energy was referenced to the C 1s
peak at 284.8 eV.. A Metrohm-Multi Autolab M204 potentiostat was used for deposition and

the device's electrochemical measurements.

Figure S1: High magnification SEM image of NCS/CS.

Table S1: Chemical composition of the NCS/CS complex over CC.
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S.No Atom Percentage Contribution (%)

1 Ni 8.35
2 Co 26.51
3 S 45.83

S2: Electrochemical measurements of electrode

The electrochemical properties of electrodes were investigated using the conventional three-
electrode system, with electroactive material NiCo,S4/CoxSy (NCS/CS) as the working
electrode, Pt wire as a counter electrode, and Ag/AgCl as a reference electrode in 1 M KOH
with or without 0.05 M Ki[Fe(CN)s] in 20 ml DI as electrolyte. The cyclic voltammetry (CV)
curves were obtained at several scan rates (5 to 50 mV/s), within a wide potential range of -
0.1 Vto 0.7 V. The electrochemical impedance spectroscopy of electrodes was done within
the frequency range of 10 kHz to 10 mHz at 0.4 V. Galvanostatic charge-discharge (GCD)
cycles were obtained at various current densities (1.0 A/g to 10 A/g) within the wide potential

window of -0.1 Vto 0.45 V.

The specific capacitance of the electrode is calculated in GCD plots using the equation®' as

below-
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(F/cm?), or Cs = (F/9). (ST)

where A1, is the discharging time, AV is the potential window of the GCD plot, and //4 or I/'m
is the current density of electrode materials on CC (A is the active area of electrode:1.5 cm?

in this case, and m is the mass of active material: 1.5 mg in this case.).
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Figure S2: CV cure of NiC02S4/CoxSy in 1 M KOH at various scan rates.
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Figure S3: Variation of logarithmic peak current as a function of logarithmic scan rate for

NCS/CS electrode in 1 KOH electrolyte.
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Figure S4: Variation of current/sqrt(scan rate) as a function of sqrt(scan rate) for NCS/CS

electrode in 1 KOH electrolyte.
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Figure S5: Capacitance contribution graph of NCS/CS electrodes in 1 KOH electrolyte.
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Figure S6: Pictorial representation of dominance of surface-controlled contribution for

NCS/CS in 1 M KOH electrolyte at 5 mV/s.
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Figure S7: GCD plot of NNCS/CS electrodes in 1 M KOH electrolyte at various current

densities.

Table S2: Specific capacitance comparison table for NiCo,S4/CS electrode and their

composites with already reported literature.

S.No | Material Specific capacitance | Current Density Reference

1 graphene oxide-NiCo,S4 1640 F/g 1A/g Panicker et al.’
2 NiCo,S4@NiMoO4/NF 2006 F g! 5 mA cm™ Zhang et al.”

3 NiCo,S4 nano-petals 2036.5F g 1Ag" Wen et al.’

4 NiC0,S, urchin balls 13522 F g’ 1Ag" Tian et al.”

5 FCP@ NiCo,S, 3115 mF cm - 2mA cm ° Wu et al.”

6 NiCo,S4s@PPy 1524F g 4mA cm’ Meng et al.’

7 V/MWCNTs 2080 F g 1Ag" Sajjad et al.”

8 NiC0,S4/CNT 2210Fg'atl1Ag |[1Ag" Luetal®

9 CC/ NiCo,S4@Zn—Ni—Co-S | 2668F g 1Ag" Peng et al.”

10 | NiCo,S4@rGO 2418 F g 1Ag " Zhao et al."’
11 NiCo0,S4@?2D-Carbyne 2507 F g_l 1A g_1 Dhandapani et

nanohybrid

al. !
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12 NiCo0,S4/CoySy 7218 F/g 2A/g This work.
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Figure S8: The Warburg factor ¢ with or without redox additive electrolyte for NCS/CS

electrode.

S3: Specific capacitance, power density, and energy density calculations of

solid-state supercapacitor device.

The specific capacitance of a solid-state symmetric supercapacitor device is calculated using

equation S2,

_ IAty

C
S mAvV

(F/9), (S2)

where I/m is the current density of the device. Additionally, the energy density and power
density of the device were also calculated at different current densities using the following

equation® **

1

E = C,(aV)? Wh/Kg), (83)
P = 3600% (W/Kg), (S4)
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Table S3: Comparison table NCS/CS symmetric supercapacitor device with other previously

reported devices.

S.No Composition Capacitance | Current density | Reference
1 NiC0,S4/20rGO//AC 92 F/g 5A/g Zhao et al.™
2 NiCo0,S4/PANI//AC 130 F/g 4 Alg He et al.™
3 NiCo,S4@PANI/CF//graphene/CF 182 F/g 5A/g Liu et al.™
4 NiC0,S4/C09S8 HSs//AC 196 F/g 5A/g Han et al.™
5 P doped Co—Ni—S//AC 1554 F/g S5A/g Meng et al.™®
6 NiCo0,S4@NiCo2S4//AC 83 F/g 4 Alg Rong et al."’
7 NiCo0,S:@GR//AC 120 F/g 4 Alg Xiao et al.”™®

Zhang et
8 PNTs@ NiCo0,S4//PNTs@ NiCo,S4 165 F/g 5A/g L
1.528
9 NiCo,S:@PPy//AC 5 mA/cm’ Chen et al.”
mAh/cm?
10 NiCo0,S4/Co,Sy 380 F/g 1A/g This work

S9
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Figure S9: EIS spectra of NCS/CS symmetric supercapacitor device.
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Figure S10: CV curve of the device before and after stability measurements.
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Figure S11: Raman Spectrum of the NCS/CS device before and after stability measurements.

Figure S12: SEM image of NCS/CS complex after stability measurements.
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