Supporting Infoirmation

Energy harvesting from NiCo₂S₄/Co_xS_y nanoflakes: Two-fold strategy

by morphology control & redox additive electrolyte

Love Bansal¹, Deb Kumar Rath¹, Shivansh Raj Pandey¹,Bhumika Sahu¹, Nikita Ahlawat¹, Subin Kaladi Chondath^{1*}, Rajesh Kumar^{1,2*}.

¹Material and Devices Laboratory, Department of Physics, Indian Institute of Technology

Indore, Simrol-453552, India

² Centre for Advanced Electronics, Indian Institute of Technology Indore, Simrol-453552,

India

*Email: rajeshkumar@iiti.ac.in (RK); subinkc@iiti.ac.in (SKC)

S1: Characterization details

A Horiba Jobin–Yvon Raman spectrometer with a 633 nm excitation laser was used to record the Raman spectrum of all the electrodes. A Rigaku X-ray diffractometer (Cu K_a radiation of 1.54 Å wavelength) was used for X-ray diffraction (XRD) of all the electrodes. A Supra 55 Zeiss scanning electron microscopy (SEM) was used for surface morphology and elemental distribution X-ray (EDX) mapping of all the electrodes. Instrument: X-ray photoelectron spectroscopy (XPS, PHI 5000 VersaProbe II, ULVAC-PHI Inc., USA) equipped with microfocused (100 μ m, 15 kV) monochromatic Al-K α X-Ray source (hv = 1486.6 eV). Both survey spectra and narrow scans (high-resolution spectra) were recorded. Survey scans were recorded with an X-ray source power of 50W and pass energy of 187.85 eV. High-resolution spectra of the major elements were recorded at 46.95 eV pass energy. XPS data were processed using PHI's Multipak software. The binding energy was referenced to the C 1s peak at 284.8 eV.. A Metrohm-Multi Autolab M204 potentiostat was used for deposition and the device's electrochemical measurements.

Figure S1: High magnification SEM image of NCS/CS.

Table S1: Chemical composition of the NCS/CS complex over CC.

S.No	Atom	Percentage Contribution (%)
1	Ni	8.35
2	Со	26.51
3	S	45.83

S2: Electrochemical measurements of electrode

The electrochemical properties of electrodes were investigated using the conventional threeelectrode system, with electroactive material NiCo₂S₄/Co_xS_y (NCS/CS) as the working electrode, Pt wire as a counter electrode, and Ag/AgCl as a reference electrode in 1 M KOH with or without 0.05 M K₃[Fe(CN)₆] in 20 ml DI as electrolyte. The cyclic voltammetry (CV) curves were obtained at several scan rates (5 to 50 mV/s), within a wide potential range of -0.1 V to 0.7 V. The electrochemical impedance spectroscopy of electrodes was done within the frequency range of 10 kHz to 10 mHz at 0.4 V. Galvanostatic charge-discharge (GCD) cycles were obtained at various current densities (1.0 A/g to 10 A/g) within the wide potential

The specific capacitance of the electrode is calculated in GCD plots using the equation^{S1} as below-

$$C_s = \frac{I\Delta t_d}{A\Delta V} (F/cm^2), \text{ or } C_s = \frac{I\Delta t_d}{m\Delta V} (F/g),$$
 (S1)

where Δt_d is the discharging time, ΔV is the potential window of the GCD plot, and I/A or I/m is the current density of electrode materials on CC (A is the active area of electrode: 1.5 cm² in this case, and m is the mass of active material: 1.5 mg in this case.).

Figure S2: CV cure of NiCo2S4/CoxSy in 1 M KOH at various scan rates.

Figure S3: Variation of logarithmic peak current as a function of logarithmic scan rate for NCS/CS electrode in 1 KOH electrolyte.

Figure S4: Variation of current/sqrt(scan rate) as a function of sqrt(scan rate) for NCS/CS electrode in 1 KOH electrolyte.

Figure S5: Capacitance contribution graph of NCS/CS electrodes in 1 KOH electrolyte.

Figure S6: Pictorial representation of dominance of surface-controlled contribution for NCS/CS in 1 M KOH electrolyte at 5 mV/s.

Figure S7: GCD plot of NNCS/CS electrodes in 1 M KOH electrolyte at various current densities.

Table S2: Specific capacitance comparison table for NiCo₂S₄/CS electrode and their composites with already reported literature.

S.No	Material	Specific capacitance	Current Density	Reference
1	graphene oxide-NiCo ₂ S ₄	1640 F/g	1A/g	Panicker et al. ¹
2	NiCo ₂ S ₄ @NiMoO ₄ /NF	2006 F g ⁻¹	5 mA cm^{-2}	Zhang et al. ²
3	NiCo ₂ S ₄ nano-petals	2036.5 F g ⁻¹	1 A g^{-1}	Wen et al. ³
4	NiCo ₂ S ₄ urchin balls	1352.2 F g ⁻¹	1 A g^{-1}	Tian et al. ⁴
5	FCP@ NiCo ₂ S ₄	3115 mF cm^{-2}	2 mA cm^{-2}	Wu et al. ⁵
6	NiCo ₂ S ₄ @PPy	1524 F g ⁻¹	4 mA cm ⁻¹	Meng et al. ⁶
7	V/MWCNTs	2080 F g ⁻¹	$1 \mathrm{A g^{-1}}$	Sajjad et al. ⁷
8	NiCo ₂ S ₄ /CNT	$2210 \text{ F g}^{-1} \text{ at } 1 \text{ A g}$	1 A g ⁻¹	Lu et al. ⁸
9	CC/ NiCo ₂ S ₄ @Zn–Ni–Co–S	$2668 \mathrm{F g}^{-1}$	1 A g^{-1}	Peng et al. ⁹
10	NiCo ₂ S ₄ @rGO	2418 F g ⁻¹	$1 \mathrm{A} \mathrm{g}^{-1}$	Zhao et al. ¹⁰
11	NiCo ₂ S ₄ @2D-Carbyne nanohybrid	2507 F g ⁻¹	1 A g^{-1}	Dhandapani et al. ¹¹

12	NiCo ₂ S ₄ /Co _x S _y	7218 F/g	2 A/g	This work.

Figure S8: The Warburg factor σ with or without redox additive electrolyte for NCS/CS electrode.

S3: Specific capacitance, power density, and energy density calculations of solid-state supercapacitor device.

The specific capacitance of a solid-state symmetric supercapacitor device is calculated using equation S2,

$$C_s = \frac{I\Delta t_d}{m\Delta V} \ (F/g),\tag{S2}$$

where I/m is the current density of the device. Additionally, the energy density and power density of the device were also calculated at different current densities using the following equation^{S3, S4}

$$E = \frac{1}{2}C_s(\Delta V)^2 \left(Wh/Kg\right),\tag{S3}$$

$$P = 3600 \frac{E}{\Delta t_d} \ (W/Kg), \tag{S4}$$

 Table S3: Comparison table NCS/CS symmetric supercapacitor device with other previously

 reported devices.

S.No	Composition	Capacitance	Current density	Reference
1	NiCo ₂ S ₄ /20rGO//AC	92 F/g	5 A/g	Zhao et al. ¹²
2	NiCo ₂ S ₄ /PANI//AC	130 F/g	4 A/g	He et al. ¹³
3	NiCo ₂ S ₄ @PANI/CF//graphene/CF	182 F/g	5 A/g	Liu et al. ¹⁴
4	NiCo ₂ S ₄ /Co9S8 HSs//AC	196 F/g	5 A/g	Han et al. ¹⁵
5	P doped Co-Ni-S//AC	155.4 F/g	5 A/g	Meng et al. ¹⁶
6	NiCo ₂ S ₄ @NiCo2S4//AC	83 F/g	4 A/g	Rong et al. ¹⁷
7	NiCo ₂ S ₄ @GR//AC	120 F/g	4 A/g	Xiao et al. ¹⁸
8	PNTs@ NiCo ₂ S ₄ //PNTs@ NiCo ₂ S ₄	165 F/g	5 A/g	Zhang et al. ¹⁹
9	NiCo ₂ S ₄ @PPy//AC	1.528 mAh/cm ²	5 mA/cm ²	Chen et al. ²⁰
10	NiCo ₂ S ₄ /Co _x S _y	380 F/g	1 A/g	This work

Figure S9: EIS spectra of NCS/CS symmetric supercapacitor device.

Figure S10: CV curve of the device before and after stability measurements.

Figure S11: Raman Spectrum of the NCS/CS device before and after stability measurements.

Figure S12: SEM image of NCS/CS complex after stability measurements.

References

- 1 N. J. Panicker and P. P. Sahu, *Diamond and Related Materials*, 2023, 136, 109936.
- 2 Y. Zhang, J. Xu, Y. Zheng, Y. Zhang, X. Hu and T. Xu, Nanoscale Res Lett, 2017, 12, 412.
- 3 Y. Wen, S. Peng, Z. Wang, J. Hao, T. Qin, S. Lu, J. Zhang, D. He, X. Fan and G. Cao, *J. Mater. Chem. A*, 2017, **5**, 7144–7152.
- 4 J. Tian, J. Zhang and X. Li, RSC Adv., 2024, 14, 9587–9593.

- 5 H. Wu, J. Bi, Y. Li, L. Wang, X. Pang, C. Xiong and Z. Li, *Journal of Materiomics*, 2021, 7, 166–176.
- 6 F. Y. Meng, Y. F. Yuan, S. Y. Guo and Y. X. Xu, Materials Technology, 2017, 32, 815-822.
- 7 M. Sajjad, X. Chen, C. Yu, L. Guan, S. Zhang, Y. Ren, X. Zhou and Z. Liu, J. Mol. Eng. Mater., 2019, 07, 1950004.
- 8 Y. Lu, Z. Zhang, X. Liu, W. Wang, T. Peng, P. Guo, H. Sun, H. Yan and Y. Luo, *CrystEngComm*, 2016, **18**, 7696–7706.
- 9 Z. Peng, L. Gong, J. Huang, Y. Wang, L. Tan and Y. Chen, Carbon, 2019, 153, 531-538.
- 10 Y. Zhao, H. Zhang, Y. Lin, J. Chen, K. Li and A. Cheng, *Diamond and Related Materials*, 2020, **108**, 107925.
- 11 P. Dhandapani, A. K. Subbiah Petchimuthuraju, S. Prasad Rajendra, M. S. AlSalhi and S. Angaiah, *ChemPhysChem*, 2024, **25**, e202300658.
- 12J. Zhao, Z. Wei, C. Wang, M. Zhou and C. Lu, *Ionics*, 2024, 30, 1723–1733.
- 13X. He, Q. Liu, J. Liu, R. Li, H. Zhang, R. Chen and J. Wang, *Chemical Engineering Journal*, 2017, **325**, 134–143.
- 14X. Liu, Z. Wu and Y. Yin, Chemical Engineering Journal, 2017, 323, 330–339.
- 15X. Han, Q. Chen, H. Zhang, Y. Ni and L. Zhang, *Chemical Engineering Journal*, 2019, **368**, 513–524.
- 16 Y. Meng, P. Sun, W. He, B. Teng and X. Xu, Nanoscale, 2019, 11, 688-697.
- 17H. Rong, T. Chen, R. Shi, Y. Zhang and Z. Wang, ACS Omega, 2018, 3, 5634–5642.
- 18Y. Xiao, D. Su, X. Wang, L. Zhou, S. Wu, F. Li and S. Fang, *Electrochimica Acta*, 2015, 176, 44–50.
- 19J. Zhang, H. Guan, Y. Liu, Y. Zhao and B. Zhang, *Electrochimica Acta*, 2017, 258, 182– 191.
- 20S. Chen, Y. Yang, Z. Zhan, J. Xie and J. Xiong, RSC Advances, 2017, 7, 18447–18455.