Supporting Information (SI) for Electronic Properties and Interfacial Engineering of metal-semiconductor 1T-, 2H -Ta₂B MBene/Janus MoSSe Heterostructures

Pham T. Truong^{1,2}, Nguyen N. Hieu^{3,4,†}, Hieu V. Nguyen⁵, Cuong Q. Nguyen^{3,4}, Tran P. T. Linh⁶, Huynh V. Phuc², Chuong V. Nguyen^{7,†}

¹Faculty of Physics, University of Education, Hue University, Hue 530000, Vietnam.
²Division of Theoretical Physics, Dong Thap University, Cao Lanh 870000, Vietnam
³Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
⁴Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
⁵The University of Da Nang, University of Science and Education, Da Nang 550000, Vietnam
⁶Faculty of Physics, Hanoi National University of Education, Hanoi 100000, Viet Nam
⁷Department of Materials Science and Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam. Email: chuong.vnguyen@lqdtu.edu.vn
[†]To whom correspondence should be addressed.

Figure S1. Projected band structures of 1T-Ta₂B, 2H-Ta₂B and Janus MoSSe monolayers given by PBE+SOC calculations.

Fig. S2. PBE+SOC projected band structure of Ta₂B/SMoSe for (a) 1T-AB1 and (b) 2H-AB1 and Ta₂B/SeMoS for (c) 1T-AB1 and (d) 2H-AB1 stacking configurations

Fig. S3. HSE06 projected band structure of Ta₂B/SMoSe for (a) 1T-AB1 and (b) 2H-AB1 and Ta₂B/SeMoS for (c) 1T-AB1 and (d) 2H-AB1 stacking configurations

Fig. S4. The fluctuations in temperature and total energy of 2H-Ta₂B/SeMoS heterostructure for the most energetically favorable 2H-AB1 stacking arrangement.