Supplementary Information for

Molybdenum in-situ etching treated ultra-thin NiFeMo LDHs nanosheet arrays as performance anodic catalyst for efficient industrial hydrogen production

Zhiqun Bai,^a Ruoxuan Guo, ^a Jingwang Kuang, ^a Huifang Chen, ^a WeiHao Sha, ^a Ao Xie, ^a Jingchao

Liu, ^{b*} Pingyu Wan^a and Yang Tang^{a*}

^a Institute of Electrochemistry, Beijing University of Chemical Technology, Beijing 100029, China

^b School of Computer Science and Engineering, Beihang University, Beijing 100191, China.

*Corresponding author. E-mail: liujingchao@buaa.edu.cn

Figure S1 Normal distribution histogram of particle size for NiFeMo/NFF

Figure S2 XRD profile of NiFeMo/NFF(a) and NiFe/NFF(b)

Figure S3 LSV curve and overpotential comparison of NFF, NiFe/NFF, NiFeMo/NFF

Figure S4 The CV curves of NFF, NiFe/NFF, NiFeMo/NFF

D •			1 /	• .•	CNT		ATEE	C	1		1 .	•
Figure	22.5	SEM	characte	rization	OI N1	feivio/	NFF	atter	long-	term (electro	VS1S
.									0			2

Element	Atomic Number	Mass (%)	Atomic (%)	
0	8	22.99	53.32	
Fe	26	29.69	22.06	
Ni	28	34.91	19.72	
Мо	42	7.74	2.99	
Zr	40	4.68	1.90	
cps/eV				
6				

Table S1 EDS Mapping of NiFeMo/NF

Electrode	10 mA cm ⁻²	100 mA cm ⁻²	300 mA cm ⁻²	500 mA cm ⁻²	800 mA cm ⁻²	1000 mA cm ⁻²		
NiFeMo/NFF	288 mV	367 mV	476 mV	575 mV	712 mV	784 mV		
NiFe/NFF	296 mV	392 mV	518 mV	627 mV	779 mV	848 mV		
NFF	327 mV	423 mV	564 mV	689 mV	866 mV	975 mV		
Table S3 Cdl and	l ECSA							
Elect	trode		Cdl (mF cm ⁻²)			ECSA (cm ²)		
NiFeM	lo/NFF	14.28			357			
NiFe	/NFF	3.36			84			
NI	FF		0.94			23.5		
Table S4 AC Imp	bedance							
Electr	ode	Rs			Rp			
NiFeM	o/NFF		0.70			6.88		
NiFe/	NFF		0.72			36.56		
NF	۲ F		0.70			219.7		

Table S2 Overpotential Data of Different Materials at 10 to 1000 mA cm⁻²

	Svnthesis	Electrochemical tests					
catalytic agent	method	Current Density (mA cm ⁻²)	rent Density Over potetial Ta mA cm ⁻²) (mV) (m		- Ref		
NiFe-LDH/Ti ₃ C ₂	hydro-thermal method	10	334	55	1		
NiFe-LDH/NaMnO	molten-salt growth method	20	260	21	2		
Mo–NiFe ₂ O ₄ -V _O	High temperature calcination method	10	315	35.9	3		
Fe _{0.3} Ni ₁ Co ₂ /S-C	hydro-thermal method Padio	10	276	52.2	4		
NiFeCo oxide	frequency magnetron sputtering	10	280	32.25	5		
FeCoMo/CP	technology Co-precipitation + pyrolysis Single-step	10	270	63	6		
FeNiVOx	aerosol assisted chemical vapor	10	250	51	7		
FeCoMn/PC	deposition Solvent thermal method	10	170	66.7	8		
NiFeMo/NFF	Electrochemical in situ etching method	10	288	43.5	This work		

Table S5 Electrochemical properties of Ni/Fe based catalysts in recent years

References:

(1) Sun Y, Wang Z, Zhou Q, et al. Ti_3C_2 mediates the NiFe-LDH layered electrocatalyst to enhance the OER performance for water splitting [J]. Heliyon, 2024, 10 (10): e30966.

(2) Li N, Hu Z, Li M, et al. Self-assembly of NiFe-LDH with birnessite via electrostatic attraction towards high-performance OER catalyst [J]. Materials Letters, 2020, 281: 128569.

(3) Tan J L, Ma M, Cheng S M, et al. Isolated Mo-doped nickel-iron spinel catalyst with oxygen vacancy and high-density interfaces for oxygen evolution reaction [J]. International Journal of Hydrogen Energy, 2025, 137: 73-82.

(4) Hong L, Liu Z, Zhang X, et al. Enhanced OER electrocatalyst performance by sulfur doping trimetallic compounds hybrid catalyst supported on reduced graphene oxide [J]. Journal of Alloys and Compounds, 2024, 991: 174238.

(5) Inamdar A I, Chavan H S, Pawar S M, et al. NiFeCo oxide as an efficient and sustainable catalyst for the oxygen evolution reaction [J]. International Journal of Energy Research, 2020, 44(3): 1789-1797.

(6) Zhang H, Zheng J, Chao Y, et al. Surface engineering of FeCo-based electrocatalysts supported on carbon paper by incorporating non-noble metals for water oxidation [J]. New Journal of Chemistry, 2018, 42(9): 7254-7261.

(7) Ehsan M A, Batool R, Hakeem A S, et al. Controlled deposition of trimetallic Fe-Ni-V oxides on nickel foam as high-performance electrocatalysts for oxygen evolution reaction [J]. International Journal of Hydrogen Energy, 2025, 98: 772-782.

(8) Zafar F, Khan M A, El-Toony M M, et al. Machine Learning Optimized FeCoMn - Trimetallic MOF-Decorated Nanofibers for Enhanced OER Catalysis [J]. Advanced Sustainable Systems, 2025: 2400840.