
Giant Emission Enhancement from Cs₃Bi₂Br₉ via Oxygen-induced Optimization of Radiation Channels

Boning Han^{‡a,e*}, Jianpeng Zhao^{‡b}, Shiying Guo^{‡c}, Jinkai Qin^{‡a}, Zhenfu Song^a, Xiaobo Han^{d*}, Chunliang Li^a, Yalong Shen^f, Xuewei Wang^a, Jizhong Song^{b*}

- ^a Tianjin Key Lab for Photoelectric Materials & Devices School of Materials Science and Engineering Tianjin University of Technology, Tianjin 300384, China
- ^b Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
- ^c College of Physics Science and Technology, Yangzhou University, Yangzhou, China
- ^d Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
- ^e School of Materials Science and Engineering, MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China
- ^f School of Biological and Materials Engineering, Suqian University, Suqian 223800, People's Republic of China

Email: 69023591@email.tjut.edu.cn, hanxiaobo@wit.edu.cn, songjizhong@zzu.edu.cn

Figure S1 (a) XRD patterns of $Cs_3Bi_2Br_9$ with 75 umol OLAM, and the standard PDF card of $Bi_2Br_{1.167}$ and BiBr. (b) XRD patterns of $Cs_3Bi_2Br_9$ with different OLAM content of 75, 90, 105, 120, and 135 umol, respectively.

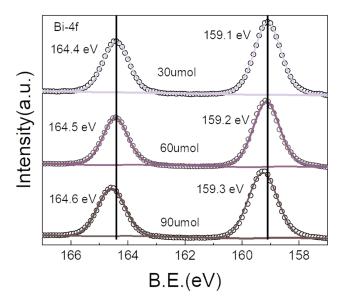


Figure S2 XPS spectra of Cs₃Bi₂Br₉ samples with different content of OLAM.

30 umol 45 umol 60 umol 75 umol 90 umol 105 umol 120 umol 135 umol Figure S3 The photographs of synthesized Cs₃Bi₂Br₉ solution in ethanol, with different content of

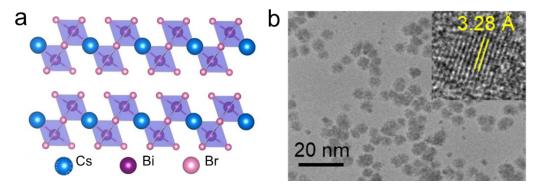


Figure S4 (a) Crystal structure of Cs₃Bi₂Br₉. (b) The TEM and HRTEM images of Cs₃Bi₂Br₉.

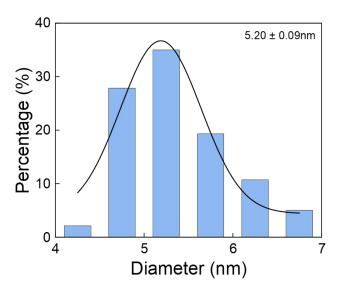


Figure S5 Size distribution histogram of the Cs₃Bi₂Br₉ crystals based on TEM images.

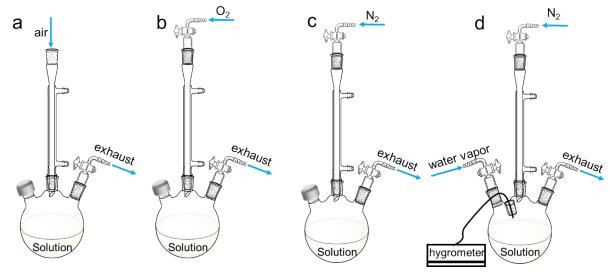


Figure S6 Schematic diagrams of the different atmospheric environments of (a) ambient air, (b) dry oxygen (O_2) , (c) dry nitrogen (N_2) , and (d) moist nitrogen with 40% relative humidity.

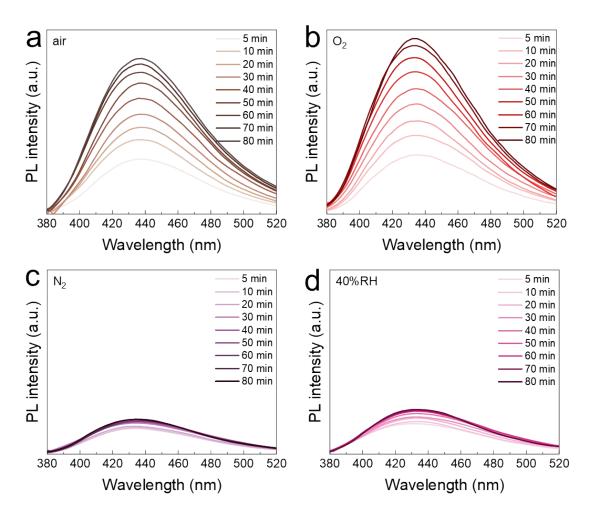


Figure S7 The PL spectra of Cs₃Bi₂Br₉ during longtime exposure in different conditions.

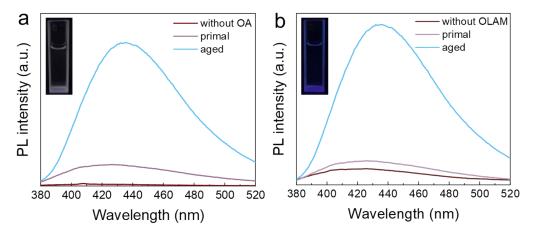


Figure S8 The PL spectra of $Cs_3Bi_2Br_9$ prepared without (a) OA and (b) OLAM, as compared with the primal and aged samples.

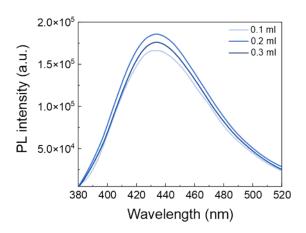
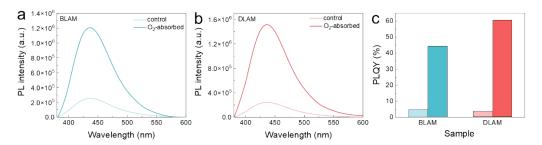



Figure S9 The PL spectra of Cs₃Bi₂Br₉ with different OA content.

Figure S10 PL spectra of Cs₃Bi₂Br₉ with (a) BLAM and (b) DLAM for control and O₂-absorbed samples, with (c) corresponding PLQY.

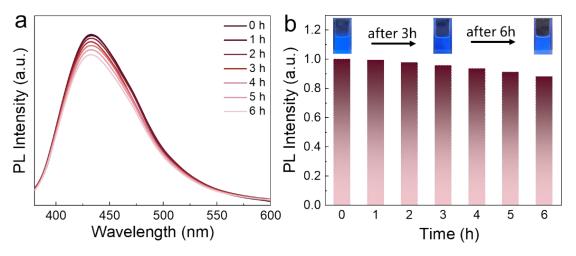
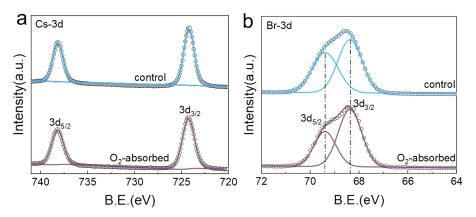
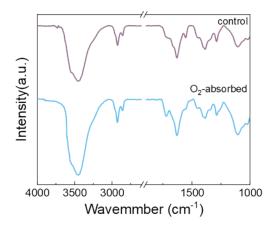
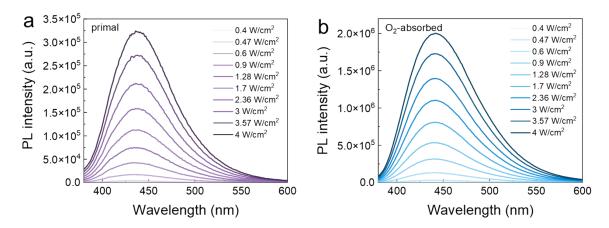
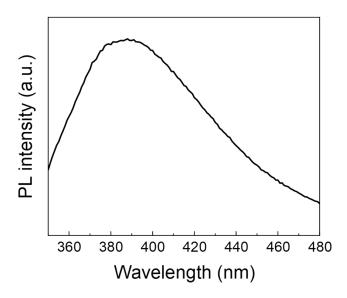


Figure S11 (a) PL spectra of Cs₃Bi₂Br₉ solution during prolonged mixing with deionized water and (b) the corresponding statistical analysis of normalized peak intensities.


Figure S12 XPS spectra of (a) Cs-3d and (b) Br-3d for control and O₂-absorbed Cs₃Bi₂Br₉ NCs.

 $\textbf{Figure S13} \ FTIR \ spectra \ of \ control \ and \ O_2\text{-absorbed} \ Cs_3Bi_2Br_9 \ samples.$

Figure S14 PL spectra of (a) control and (b) O₂-absorbed Cs₃Bi₂Br₉ under different excitation power intensities.

Figure S15 PL spectra of mixed solution with oleic acid (OA), n-octylamine (OLAM) and dimethyl sulfoxide (DMSO) used for Cs₃Bi₂Br₉ preparation.

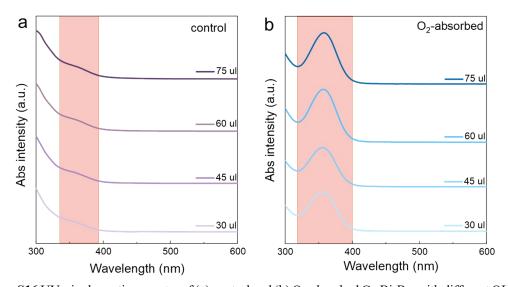


Figure S16 UV-vis absorption spectra of (a) control and (b) O_2 -absorbed $Cs_3Bi_2Br_9$ with different OLAM content.

Table S1 PL lifetime for primal and aged $Cs_3Bi_2Br_9$ NCs in ethanol solution

Sample	A_1	τ_1	A_2	τ_1	τ
Control Cs ₃ Bi ₂ Br ₉	0.97	1.61	0.10	1.63	1.61
O ₂ -absorbed Cs ₃ Bi ₂ Br ₉	0.77	5.67	0.23	12.27	7.19

 $\textbf{Table S2} \ PL \ lifetime \ for \ primal \ and \ aged \ Cs_3Bi_2Br_9 \ NCs \ under \ different \ temperature$

Sample	A_1	τ_1	A_2	τ_1	τ
Primal-100 K	0.73	2.07	0.27	11.86	4.71
Primal-180 K	0.92	1.87	0.09	12.48	2.84
Primal-260 K	0.93	1.71	0.08	10.23	2.39
Primal-300 K	0.97	1.61	0.10	1.63	1.61
Aged-100 K	0.69	6.59	0.31	11.85	8.22
Aged-180 K	0.71	6.52	0.30	11.57	8.10
Aged-260 K	0.74	5.45	0.27	12.39	7.48
Aged-300 K	0.77	5.67	0.23	12.27	7.19