Supporting Information

Modulating Anti-Thermal and Concentration Quenching for Enhanced Dysprosium Emission

Wasim Ullah Khan^{a,b}, Haris Zaman^b, Waheed Ullah Khan^a, Haiou Zhu^{a,*}

a. Analysis and Testing Center, Shenzhen Technology University/College of new Materials and new Energies, Shenzhen Technology University, Pingshan Shenzhen, 518118 P.R. China.

b. Institute of Chemical Sciences University of Peshawar, Pakistan.

Corresponding Author

*Email: zhuhaiou@sztu.edu.cn

Table S1. Fraction Atomic Coordinates and Equivalent Isotropic Displacement Parameters ($Å^2$) for SLAB:0.015Tm³⁺,Dy³⁺.

Atoms	Site	X	Y	Z	$\mathbf{U_{iso}}$	N
Sr1/La1	2c	0.333/0.333	0.666/0.666	0.250/0.250	0.0121(13)	0.202/0.797(14)
Sr2/La2	6h	0.128/128(5)	0.840/0.840(5)	0.250/0.250	0.99(2)	0.98/0.12(5)
Al	6g	0	1/2	0	0.0160(15)	1
B1	6h	0.2168(3)	0.7636(3)	3/4	0.004(5)	1
B2	4e	0	0	-0.0899(12)	0.04(2)	1/2
O1	12i	0.3407(13)	0.9233(12)	1/4	0.016(4)	1
O2	12i	0.3006(2)	0.4660(14)	0.5369	0.019(4)	1
О3	6h	-0.0435(9)	0.1037(8)	0.4071(12)	0.010(2)	1
O4	6h	0.08261(3)	0.4637(3)	o.2500(3)	0.016(4)	1

Space group P63/m: a = b = 10.3867(3) A°, c = 5.8146(4) A°, Reliability factor: $R_p = 0.0275$, $R_{wp} = 0.0453$.

Table S2. Some selected bond lengths of SLAB:0.015Tm³⁺,0.05Dy³⁺ phosphor.

Atoms	SLAB:0.015Tm ³⁺ ,0.05Dy ³⁺
Sr1/La1–O	1 2 201/11) Å V 2
211, 241	
Sr1/La1–O	- ()
Sr2/La2–O	
Sr2/La2-O	2 2.205(11) Å X 1
Sr2/La2-O	3 2.335(8) Å X 2
Sr2/La2-O	4 2.446(2) Å X 1
Sr2/La2-O	4 2.420(3) Å X 1
Sr2/La2-O	4 2.423(3) Å X1
Al-O1	1.926(7) Å X 2
Al-O2	2.080(10) Å X2
Al-O3	1.796(8) Å X 2
B1-O2	1.305(3) Å X 1
B1-O3	1.347(2)Å X 2
B2-O4	1.712(13) Å X 3

Table-S3. Lifetimes, fitting Parameters, energy transfer rates, and quantum efficiency for SLAB: Tm^{3+} , xDy^{3+} (x = 0 to 0.15) from measurements of Dy^{3+} emission at RT.

Sm ³⁺	R^2_{adj}	τ*	$^{a}k_{ET}(\mu s)^{-1}$	η (%)
0	0.9995	22.35	0.00	0.0
0.01	0.9993	20.07	5.08	11.70
0.05	0.9979	16.13	17.64	29.01
0.10	0.9953	10.83	47.61	52.84
0.15	0.9918	6.53	88.77	70.23

Table-S4. Calculated D_{uv} value of color quality and chromaticity shift (ΔE) of SLAB:0.015Tm³⁺,0.05Dy³⁺ along with various temperatures.

	Colo			
Value of x	X Y		$\mathbf{D_{uv}}$	$(\Delta E) \times 10^{-3}$
300 K	0.321	0.335	0.0023	0.00
350 K	0.324	0.330	- 0.0014	8.31
400 K	0.322	0.328	- 0.0020	8.90
450 K	0.318	0.322	- 0.0073	9.12
500 K	0.313	0.317	-0.0032	10.31

Supplementary Figures and Tables

Fig. S1. Rietveld refinement result of the SLAB:0.015Tm³⁺,0.10Dy³⁺.

Fig. S2. FTIR spectra of singly doped and codoped Tm³⁺,Dy³ phosphors.

The absorption peak between 200 and 290 nm corresponds to the host, while the peaks between 200 and 500 nm are attributed to transitions involving Tm³⁺ or Dy³⁺ ions. Such an interpretation is compatible with the f-f transitions observed in their PLE spectrum. The bandgap for the host material is typically calculated using the formula below.

$$F(R_{\infty}) = \frac{A(1-R)}{2R} = K/S \tag{S1}$$

The absorption, the scattering coefficient, and the reflections are denoted by the letters K, R, and S in this instance. The estimated value of Eg is approximately 4.96 eV (**Fig. 3b**), derived from the linear extrapolation of $[F(R_{\infty})hv]^2 = 0$.

Fig. S3. (a) Decay times of the SLAB:yDy³⁺. (b) The linear relationship of log(I/x) vs log(x) and (c) the fitting with the Inokuti-Hirayama model of the SLAB:yDy³⁺.

The distance between ions can be estimated using an equation.

$$R \approx 2 \left[\frac{3V}{4\pi x_c N} \right]^{1/3} \tag{S2}$$

In which V is referred to as cell volume, N is the number of molecules in the unit cell, and X_c is the total concentration of Tm^{3+} and Dy^{3+} . For the $SLAB:0.015Tm^{3+},0.08Dy^{3+}$ host with N=2, V=546.45 Å³ (denoting the cell volume), and a concentration of Tm^{3+} and Dy^{3+} at 0.095, the computed critical distance is approximately 17.65 Å. This estimation suggests a minimal possibility for ET through exchange interaction due to the relatively large distance between ions, showing a tiny possibility for ET through the exchange interaction.

Fig. S4. Decay plots of the samples $SLAB:0.025Tm^{3+}$, yDy^{3+} (y=0.01, 0.1, 0.15 and 0.20).

Fig. S5. The dependence of τ_0/τ on the total content of Tm^{3+} and Dy^{3+} in SLAB.

Fig. S6. The spectral overlap of Dy^{3+} excitation and Tm^{3+} emission in SLAB and of Tm^{3+} excitation and Dy^{3+} emission in SLAB.

Fig. S7. CL intensities under different forwarding bias currents (0–120 mA).

The following formula converts the CIE 1931 x and y values into their corresponding Duv values. 1 ,

1) Convert chromaticity coordinates from (x, y) or (u', v') to (u, v), use the following formulas:

$$u = \frac{4x}{(-2x+12y+3)}$$
 Or

$$v = \frac{6y}{(-2x+12y+3)} \qquad v = \frac{2v'}{3}$$

2) Duv is obtained by

$$L_{FP} = \sqrt{(u - 0.292)^2 + (v - 0.24)^2}$$

$$a = \arccos(\frac{u - 0.292}{L_{FP}})$$

$$L_{BB} = k_6 a^6 + k_5 a^5 + k_4 a^4 + k_3 a^3 + k_2 a^2 + k_1 a + k_0$$

$$D_{uv} = L_{FP} - L_{BB}$$

Where, $k_0^{=-0.471106}$, $k_1^{=1.925865}$, $k_2^{=-2.4243787}$, $k_3^{=1.5317403}$, $k_4^{=-0.5179722}$, $k_5^{=-0.08939440}$, and $k_6^{=-0.00616793}$. The calculated value of D_{uv} for SLAB:0.015Tm³⁺,xDy³⁺ are listed in **Table S4**.

- 1. D. Baxter, M. Royer and K. Smet, *Leukos*, 2024, **20**, 55-66.
- 2. M. Royer, M. J. Murdoch, K. Smet, L. Whitehead, A. David, K. Houser, T. Esposito, J. Livingston and Y. Ohno, *Leukos*, 2023, **19**, 35-52.