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S1 – Synthesis / characterisation of metal complexes

General information 
All chemicals were used as supplied without further purification. 

NMR spectra were recorded on Bruker Avance (300 MHz), Bruker Avance III HD (400 MHz), 
Bruker Avance III HD (500 MHz) spectrometers at 25°C in the indicated deuterated solvents 
unless stated otherwise. Low resolution ESI mass spectrometry was performed using an 
Agilent 6130B ESI-MS instrument; high resolution ESI mass spectra were acquired on a 
Bruker Compact ESI-Q-TOF instrument.  UV/Vis spectra were recorded on an Implen C40 
Nanophotometer and/or a Clariostar Plus (BMG Labtech) plate reader.  Compounds that 
have been previously reported are referenced in the main text.

Complex syntheses
Preparation of cubic cage [Fe8(LA)12](BF4)16 (Fe8)

This follows the method used to prepare Co8 (main text, ref. 2c). Fe(BF4)2•xH2O (0.1 
mmol) and LA (66.3 mg, 1.5 mmol; see Fig. 1) were combined with methanol (6 cm3) in a 
Teflon-lined autoclave. The suspension was heated to 120 °C at a rate of 5 °C min-1, held at 
that temperature for 6 hours, then cooled at a rate of 0.1 °Cmin-1 to 105, 90, 75, 60, 45, 30 
and 25 °C, holding at each temperature for 3 hours. This afforded good yields of crystals 
which were washed several times with methanol and dried under reduced pressure. Yield of 
Fe8: 74.9 mg, 0.0105 mmol, 84%.
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Fig. S1: 1H NMR spectrum (300 MHz) of Fe8 in CD3CN at 298 K.
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Fig. S2: HR-ESI-MS of Fe8 in MeCN showing {Fe8 – n(BF4
-)}n+ (n = 4 – 9) signals associated with 

sequential loss of anions.
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Fig. S3: HR-ESI-MS of Fe8 in MeCN showing expansion of signals for {Fe8 – n(BF4
-)}n+ (n = 4 – 10) 

combined with the calculated isotope patterns for each signal.
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Fig. S4: Molecular structure of the complex cation of the octanuclear cage Fe8 from crystallographic 
data.  Left: a wireframe view of the complex cation with two crystallographically equivalent ligands 

highlighted in red for clarity (the cage is centrosymmetric).  Right: a space-filling view showing binding 
of fluoroborate anions (B – purple, F – green) in the cage windows.  Fe–N distances all lie in the 

range 2.17 – 2.25 Å.  Fe•••Fe distances between the cage vertices all lie in the range 11.16 – 11.53 
Å.

Preparation of [M(PyPzMe)3](BF4)2 (Co1, Fe1, Zn1, Ni1)
A mixture of  the relevant M(BF4)2•xH2O (0.5 mmol) and PyPzMe (238.6 mg, 1.5 

mmol) in ethanol (30 cm3) was heated to reflux for 2 hours. The reaction mixture was then 
cooled to room temperature and a precipitate formed. The precipitate was collected by 
filtration and purified by recrystallisation from hot ethanol (~10 cm3). The resulting crystals 
were collected, washed with ice cold ethanol (~10 cm3) and dried under reduced pressure to 
yield the product as: Co1, orange-pink crystals, (291.1 mg, 0.410 mmol, 82%); Fe1, yellow-
orange crystals, (243.9 mg, 0.345 mmol, 69%); Ni1, blue crystals, (269.4 mg, 0.38 mmol, 
76%); Zn1, colourless crystals, (303.8 mg, 0.425 mmol, 85%).

-100-90-80-70-60-50-40-30-20-100102030405060708090100110120130
Chemical Shift / ppm

4



Fig. S5: 1H NMR spectrum (300 MHz) of Co1 in CD3CN at 298 K.  The presence of signals in sets of 
four of equal intensity (e.g. 9 – 19 ppm; -28 to -38 ppm) reflects the 1:3 mixture of fac and mer 

isomers, see ref. 14.
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Fig. S6: HR-ESI-MS of Co1 in MeCN.
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Fig. S7: HR-ESI-MS of Co1 in MeCN showing expansion of signals and calculated isotope patterns.
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Fig. S8: 1H NMR spectrum (300 MHz) of Ni1 in CD3CN at 298 K.
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Fig. S9: HR-ESI-MS of Ni1 in MeCN.

 

395.0932
1+

396.0961
1+

397.0891
1+

398.0912
1+

399.0877
1+

Ni1.d: +MS, 5.3-5.6min #317-332

395.0925
1+

396.0952
1+

397.0885
1+

398.0904
1+

399.0869
1+

Ni₁(C₉H₉N₃)₂(BF₄)₀F₁, M, 395.0925
0.0

0.5

1.0

1.5

5x10
Intens.

0

500

1000

1500

2000

394 395 396 397 398 399 400 401 m/z

[NiL2]F+ meas.

[NiL2]F+ calc.

462.1015

463.0979
1+

464.0996
1+ 465.0940

1+

466.0959
1+

467.0927
1+

Ni1.d: +MS, 5.3-5.6min #317-332

462.1006
1+

463.0973
1+

464.0988
1+ 465.0933

1+

466.0950
1+

467.0916
1+

Ni₁(C₉H₉N₃)₂(BF₄)₁, M, 463.0970
0

2

4

5x10
Intens.

0

500

1000

1500

2000

461 462 463 464 465 466 467 468 469 470 m/z

[NiL2]BF4+ meas.

[NiL2]BF4+ calc.

Fig. S10: HR-ESI-MS of Ni1 in MeCN showing expansion of signals and calculated isotope patterns.
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Fig. S11: 1H NMR spectrum (300 MHz) of Fe1 in CD3CN at 298 K: the presence of signals in sets of 
four of equal intensity (e.g. 80-100 ppm; -20 to -35 ppm) reflects the 1:3 mixture of fac and mer 

isomers, see ref. 14.
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Fig. S12: HR-ESI-MS of Fe1 in MeCN.
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Fig. S13: HR-ESI-MS of Fe1 in MeCN showing expansion of signals and calculated isotope patterns.
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Fig. S14: 1H NMR spectrum of Zn1 in CD3CN at 298 K.
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Fig. S15: HR-ESI-MS of Zn1 in MeCN.
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Fig. S16: HR-ESI-MS of Zn1 in MeCN showing expansion of signals and calculated isotope patterns.
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(a) (b) (c)

Fig. S17:  Molecular structure of the complex cation of mer-Co1 from crystallographic data.  Pane (a) 
shows how one ligand is disordered over two sites in the crystal structure; panes (b) and (c) show the 

separate components, both of which have a mer tris-chelate geometry.  Bond distances (Å) from 
Co(1): N(11A), 2.117; N(21A), 2.119(8); N(11B), 2.202(4); N(21B), 2.122(4); N(11C), 2.146(4); 

N(21C), 2.127(4); N(11D), 2.135(18); N(21D), 2.145(17).

Fig. S18:  Molecular structure of the complex cation of Zn1 from crystallographic data.  The unit cell is 
isostructural with that of Co1 but all three pypz-Me ligands are disordered over two orientations, as is 
the Zn(II) ion, such that a superimposed mixture of fac and mer isomers is present.  This dataset has 
not been deposited in the CCDC; the figure is included just to illustrate that the Zn1 complex has the 

expected mononuclear structure and is isostructural with Co1.
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S2 – Dye Binding studies
Fluorescence titrations between Co8 and each dye to evaluate association of each fluorescent 
dye type with Co8. 

Solutions of dye (see Fig. 2, main text) and Co8 in 2% DMSO:Phosphate buffer (0.1 
M, pH 7.0) were combined in a 96-well plate to achieve a total volume of 200 μL such that 
each well contained a different concentration of dye and Co8.  Absorption and fluorescence 
spectra were recorded on a BMG Clariostar plate reader. Fluorescence measurements used 
excitation at the wavelength corresponding to A = 0.1 and an emission window of appropriate 
width. The instrument was warmed to 25˚C, and the plate was pre-shaken to remove bubbles 
and allowed to equilibrate for 30 minutes before recording spectra. Plotting the degree of 
fluorescence quenching of the dye against dye mole fraction (Job plot) allowed binding ratio 
of the dyes and Co8 to be quantified.  Bindfit (main text, ref. 17) was used to fit 1:1 binding 
isotherms to absorption and fluorescence titration data to determine an association constant 
for each dye with Co8. Each titration was repeated in triplicate. Illustrative data for titrations 
with FLU and SRB are shown below.
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Fig. S19: Job plot showing degree of fluorescence quenching of SRB for varying Co8/SRB mole 

fractions at a total combined concentration of 10 μM in phosphate buffer (0.1 M pH 7.0), indicating a 
high degree of association of SRB with the cage in solution (ca. 8:1 SRB:Co8 binding).
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Fig. S20: Luminescence spectroscopic titration involving addition of portions of Co8 to SRB (10 μM) in 
phosphate buffer (0.1 M, pH 7.0): fitting to a 1:1 binding isotherm afforded the association constant Kb 

= 6.7 x 104 M-1.
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Fig. S21: Job plot showing degree of fluorescence quenching for varying Co8/FLU mole fractions at a 
total concentration of 10 μM in phosphate buffer (0.1 M, pH 7.0), indicating ca. 3:1 FLU:Co8 binding at 

this concentration.
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Fig. S22: Fluorescence spectroscopic titration of FLU and Co8 (10 μM) in phosphate buffer (0.1 M, 
pH 7.0): fitting to a 1:1 binding isotherm afforded the association constant (Kb = 1.2 x 105 M-1).
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S3 – Dye Degradation Studies
UV/vis measurements to follow the the dye degradation reactions were recorded using 

an Implen Nanophotometer C40 spectrophotometer. 

Stock solutions of each complex [M1 (M = Fe, Co, Ni, Zn); Co4; M8 (M = Fe, Co, Ni, 
Zn); Co12] were prepared by stirring roughly 10 mg in TWEEN20 (200 μL) followed by addition 
of phosphate buffer (2 mL, 0.1 M, pH 7.0) and further stirring for 2 hours then filtration to 
remove any undissolved solid. The concentration of each solution was then determined by 
UV/vis spectroscopy; solutions were subsequently diluted with buffer to the desired 
concentration (M1: 450 μM, Co4: 112.5 μM, M8: 56.25 μM, Co12 37.5 μM). Stock solutions of 
the dyes FLU, CFLU, EY, RB and SRB (375 μM) were made using the same buffer and 
concentrations determined by UV/vis spectroscopy. Peroxymonosulfate (PMS) stock solutions 
(17 mM) were made by dissolving KHSO5 (25.8 mg, 0.17 mmol) in water (10 cm3). PMS 
solutions were prepared fresh each day and kept in low light conditions to minimise 
spontaneous activation. 

The dye degradation reactions were followed by UV/vis measurements of the intensity 
of the dye absorption maximum (FLU, 489 nm; CFLU, 490 nm; EY, 511 nm; RB, 552 nm; 
SRB, 563 nm) over 30 mins with measurements at intervals of 5 seconds. Dye stock solution 
(20 μL), cage stock solution (10 μL) and buffer (950 μL) were combined and agitated 
vigorously using a vortex generator. The reaction was then initiated by addition of the PMS 
stock solution (20 μL) rapidly followed by vigorous agitation (<1 s) and measurement of the 
first UV/vis absorption datapoint. Each experiment was performed at least twice, and the 
UV/Vis spectra were checked at the end of catalytic runs to confirm cage integrity.

Below are shown example normalised individual reaction profiles for degradation of 
CFLU and EY, with and without Co8 present as a catalyst, from which the first-order rate 
constants in Table 1 (main text) are derived using analysis of initial rates.  All five catalysed 
reaction curves are collected in Fig. 8 (main text).
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Fig. S23: Normalised UV-vis absorption intensity at λ = Amax over time, for the uncatalyzed (orange 
line) and for Co8-catalysed (blue line) and degradation of CFLU (7.5 μM) by PMS (45 eq.) in 

phosphate buffer (0.1 M, pH 7.0).
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Fig. S24: Normalised UV-vis absorption intensity at λ = Amax over time, for the uncatalyzed (orange 
line) Co8-catalysed (blue line) and degradation of EY (7.5 μM) by PMS (45 eq.) in phosphate buffer 

(0.1 M, pH 7.0).
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Fig. S25: Natural log of dye (FLU, CFLU, EY, RB, SRB) concentration over time showing first order 
kinetic behaviour in initial stages of the dye degradation by PMS catalysed by Co8 (see reaction 

progress curves in Fig. 8 of main text).  Gradients of the fitted lines were used to calculate the initial 
rate constants which are included in Table 1, lines 3 and 5 – 8.
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Fig. S26: Natural log of FLU dye concentration over time showing first order kinetic behaviour in initial 
stages of the dye degradation by PMS catalysed by Co1, Co4, Co8 and Co12 (see reaction progress 

curves in Fig. 7 of main text).  Gradients of the fitted lines were used to calculate the initial rate 
constants which are included in Table 1, lines 1 – 4.
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S4 – X-ray crystallography 
Details of the crystal used, data collection and refinement parameters are given in 

Table S1 (below).  Diffraction data were collected on a Rigaku / Oxford Diffraction Synergy S 
instrument equipped with a HyPix-6000HE Hybrid Photon Counting (HPC) detector.  The 
data were integrated and an absorption correction applied using the CrysAlisPro software.S1  
The structures were solved with Olex2,S2 using dual space iterative methods (SHELXT)S3 
and refined by a full-matrix least-squares algorithm (SHELXL).S3  As usual in structures of 
this type (refs. 2 – 4, main text), disorder of anions and solvent molecules which could not be 
successfully modelled necessitated use of a solvent mask function to remove diffuse 
electron density; and weak scattering necessitated extensive use of geometric and 
displacement parameter restraints, to provide a stable refinement and a physically 
reasonable model.  Full details are in the CIFs.

Table S1. Crystal parameters, data collection and refinement details for the crystal structuresa

Complex Ni8•EY Ni8•SRB Fe8 Co1

CCDC number 2455100 2455101 2455103 2455102
Formula C401H398.2B10.45Br6.8

Cl0.15F41.88N72Ni8O40

C406.5H427.5B10.82F43.28

N75Ni8O40.5S3

C372.2H412.8B12.75 

Cl1.55F51Fe8N72O38.2

C27H27B2CoF8N9

Molecular weight 8791.64 8516.85 8114.69 710.12
Crystal system triclinic triclinic Monoclinic monoclinic
Space group P–1 P–1 C2/c P21/n
a/Å 21.8986(4) 21.4417(2) 32.9811(2) 12.6814(4)
b/Å 22.3981(4) 22.1353(2) 30.0048(2) 12.1894(4)
c/Å 43.4906(8) 24.3064(3) 39.7967(3) 20.2334(8)
/° 104.597(2) 78.5620(10) – 90
/° 98.324(2) 72.3190(10) 96.4540(10) 104.141(4)
/° 94.218(2) 88.9640(10) – 90
V/Å3 20290.2(7) 10762.1(2) 39132.9(5) 3032.88(19)
Z 2 1 4 4
ρ/g cm−3 1.439 1.314 1.377 1.555
Crystal size/mm3 0.21 x 0.05 x 0.03 0.50 x 0.10 x 0.10 0.06 x 0.06 x 0.06 0.04 x 0.02 x 0.01
μ/mm−1 1.986 1.274 3.244 5.205
Data, restraints, 
parameters

78392, 1206, 4837 44489, 551, 2495 38176, 722, 2388 5984, 496, 569

Rint, Rsigma 0.1465, 0.1141 0.0788, 0.0369 0.0436, 0.0371 0.0392, 0.0359
Final R1, wR2

b 0.0885, 0.2636 0.0949, 0.3252 0.0698, 0.2089 0.0813, 0.2477
Largest peak/hole/e Å−3 2.15, –0.68 1.70, –0.91 1.55, –0.82 1.10, –0.61
a Conditions in common to all structures: Cu-K radiation (wavelength 1.54184 Å), T = 100K
b The value of R1 is based on ‘observed’ data with I > 2σ(I); the value of wR2 is based on all data.
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