Supplementary Information

Covalently bonded graphene oxide-carbon nanotube hybrid nanofillers

for achieving high-performance polyamide 6 composites with superior

mechanical properties and thermal conductivity

Guanjun Liu^{a,*}, Yan Liu^a, Meng Zhang^a, Danyang Zhao^a, Ping Liu^a, Lu Wang^b, Lizhi Li^c,

Meiling Yan d,*

^a College of chemical engineering and materials, Shandong University of Aeronautics, Binzhou, 256600, P. R. China

^b Department of Geology and Surveying and Mapping, Shanxi Institute of Energy, Jinzhong, 030600, P.R. China

^c Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou, 450001, P.R.

China

^d School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, P.R. China

^{*} Corresponding authors:

liuguanjun@sdua.edu.cn(Guanjun Liu); yanmeiling123@163.com(Meiling Yan)

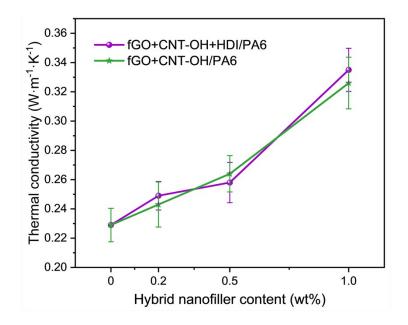


Figure S1 Comparative study on the thermal conductivity of fGO+CNT-OH/PA6 composites

versus fGO+CNT-OH+HDI/PA6 composites.