Magnetic hybrid sol-gel ionic network catalyst for direct alcohol esterification under solvent-free conditions

Maryam Faraji,^a Fariborz Mansouri,* ^b Babak Karimi*^{a,c} and Hojatollah Vali^d

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan 45137-66731, Iran.

^bDepartment of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran

^CResearch Centre for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

^d Department of Anatomy, Cell Biology and Facility for Electron Microscopy Research, McGill University, Montreal, Quebec H3A 2A7, Canada

Table of content

Figure S1: Microemulsion method to prepare Fe ₃ O ₄ @SiO ₂ core-shell nanoparticles	3
Figure S2: Stabilization of 3-mercaptopropyltrimethoxysilane on Fe ₃ O ₄ @SiO ₂	3
Figure S3:Preparation method of 1,3,5-tris (vinylimidazolemethyl)benzene bromide	3
Figure S4: Immobilization of ionic liquid on Fe ₃ O ₄ @SiO ₂ -SH	4
Figure S5: The method of exchanging hydrogen sulfate anion with bromide ion on Fe ₂ O ₄ @SiO ₂ -S-	
xIm ⁺ Br magnetic support	5
Figure S6: TG analysis of Fe ₂ O ₄ $@$ SiO ₂ -SH	5
Figure S7: TG analysis of Fe ₃ O ₄ $@$ SiO ₂ SiT ⁺	5
Figure S8 :TG analysis of Fe Ω_{10} SiO. S vIm ⁺ HS Ω_{10} -	6
Figure S8 . To analysis of $Fc_3O_4(w)SiO_2$ -S-XIII $FISO_4$	0
Figure S9 : Nurogen adsorption-desorption (a, BET isotherm of $Fe_3O_4(0)SO_2$	/
Figure S10 :Nurogen adsorption-desorption (a, BET isotherm of $Fe_3O_4(\underline{w})SiO_2$ -SH	/
Figure S11:Nitrogen adsorption-desorption (a, BET isotherm of Fe ₃ O ₄ @SiO ₂ -S-xIm ⁺ Br ⁻	8
Figure S12 :Nitrogen adsorption-desorption (a, BET isotherm of $Fe_3O_4(a)SiO_2$ -S-xIm ⁺ HSO ₄ ⁻	8
Figure S13 :FT-IR spectra for Fe_3O_4 ($@SiO_2$ core-shell nanoparticle	9
Figure S14 :FT-IR spectra for Fe ₃ O ₄ @SiO ₂ -SH	9
Figure S15 :FT-IR spectra for Fe ₃ O ₄ @SiO ₂ -S-xIm ⁺ Br ⁻	.10
Figure S16 :FT-IR spectra for Fe ₃ O ₄ @SiO ₂ -S-xIm ⁺ HSO ₄ ⁻	.10
Figure S17 :The VSM curves of Fe ₃ O ₄ @SiO ₂	.11
Figure S18 :The VSM curves of Fe ₃ O ₄ @SiO ₂ -SH	.11
Figure S19 :The VSM curves of Fe ₃ O ₄ @SiO ₂ -S-xIm ⁺ Br ⁻	.12
Figure S20 : The VSM curves of $Fe_2O_4@SiO_2-S-xIm^+HSO_4^-$.12
Figure S21 TG analysis of Re- Fe ₂ O ₄ $@$ SiO ₂ -S-xIm ⁺ HSO ₄ ⁻	15
Figure S22: Comparison of TG analysis of Fe ₂ O ₂ $@$ SiO ₂ -S-xIm ⁺ HSO ₂ (a) and Re- Fe ₂ O ₂ $@$ SiO ₂ -S-	
$vIm^+HSO.$: (b)	16
Figure S22: Nitrogen advantian desarction (a PET isotherm of P_{0} Eq. (a) S_{1} (b) S_{2} V_{1}	16
Figure S25: Nutogen adsorption-desorption (a, BET isotherm of Re-re ₃ O_4 (μ SiO ₂ -S-XiII 11SO ₄	17
Figure S24: F1-IK spectra for Re-Fe ₃ O ₄ (U SIO ₂ -S-XIM HSO ₄	.1/
Figure S25: Competition F1-IR spectra of Re-Fe ₃ O ₄ (a)SiO ₂ -S-xIm ⁺ HSO ₄ ⁻ (a) with Fe ₃ O ₄ (a)SiO ₂ -S-	17
$xIm^+HSO_4^-$ (b)	.17
Figure S26:. The VSM curves of Re-Fe ₃ O ₄ @SiO ₂ -S-xIm ⁺ HSO ₄ ⁻	.18
Figure S27: Competition VSM curves of $Fe_3O_4@SiO_2-S-xIm^+HSO_4^-$ (a) and $Re-Fe_3O_4@SiO_2-S-$	
$xIm^+HSO_4^-(b)$.18
Figure S28: ¹ H-NMR spectrum (400 MHz, DMSO-d ₆) of 1,3,5-tris(vinylimidazolemethyl)benzene	
bromide ionic liquid	.19
Figure S29: ¹³ C-NMR spectrum (100 MHz, DMSO-d ₆) of 1,3,5-tris(vinylimidazolemethyl)benzene	
bromide ionic liquid.	.20
Figure S30: ¹ H-NMR spectrum (400 MHz, CDCl ₃) of heptyl acetate	.21
Figure S31: ¹³ C-NMR spectrum (100 MHz, CDCl ₂) of heptyl acetate	.21
Figure S32: ¹ H-NMR spectrum (400 MHz, CDCl ₂) of octvl acetate	22
Figure S32: ¹³ C-NMR spectrum (100 MHz, CDCl ₂) of octyl acetate	.22
Figure S24: 14 NMP spectrum (400 MHz, CDC1) of deayl acetate	.25 24
Figure S25. ¹³ C NMD spectrum (100 MHz, CDCl ₃) of decyl acetate	.24
Figure S55: 10 C-NWR spectrum (100 MHz, CDCl ₃) of decyl acetate	.24
Figure S36: 'H-NMR spectrum (400 MHz, CDCl ₃) of dodecyl acetate $(100 \text{ MHz}, CDCl_3)$.25
Figure S3/: ¹³ C-NMR spectrum (100 MHz, CDCl ₃) of dodecyl acetate	.26
Figure S38: ¹ H-NMR spectrum (400 MHz, CDCl ₃) of benzyl acetate	.27
Figure S39: ¹³ C-NMR spectrum (100 MHz, CDCl ₃) of benzyl acetate	.27
Figure S40: ¹ H-NMR spectrum (400 MHz, CDCl ₃) of 4-methoxy benzyl acetate	.28
Figure S41: ¹³ C-NMR spectrum (100 MHz, CDCl ₃) of 4-methoxy benzyl acetate	.29
Figure S42: ¹ H-NMR spectrum (400 MHz, CDCl ₃) of 4-chlorobenzyl acetate	.30

Figure S43: ¹³ C-NMR spectrum (100 MHz, CDCl ₃) of 4-chlorobenzyl acetate	
Figure S44: ¹ H-NMR spectrum (400 MHz, CDCl ₃) of 2,4-chlorobenzyl acetate	
Figure S45: ¹³ C-NMR spectrum (100 MHz, CDCl ₃) of 2,4-chlorobenzyl acetate	
Figure S46: ¹ H-NMR spectrum (400 MHz, CDCl ₃) of 1-phenyl-3-propyl acetate	
Figure S47: ¹³ C-NMR spectrum (100 MHz, CDCl ₃) of 1-phenyl-3-propyl acetate	
Figure S48: ¹ H-NMR spectrum (400 MHz, CDCl ₃) of cinnamyl acetate	
Figure S49: ¹³ C-NMR spectrum (100 MHz, CDCl ₃) of cinnamyl acetate	
Figure S50: ¹ H-NMR spectrum (400 MHz, CDCl ₃) of cyclohexyl acetate	
Figure S51: ¹³ C-NMR spectrum (100 MHz, CDCl ₃) of cyclohexyl acetate	
Figure S52: ¹ H-NMR spectrum (400 MHz, CDCl ₃) of cyclooctyl acetate	
Figure S53: ¹³ C-NMR spectrum (100 MHz, CDCl ₃) of cyclooctyl acetate	
Figure S54: ¹ H-NMR spectrum (400 MHz, CDCl ₃) of 1-phenyl-1-propyl acetate	
Figure S55: ¹³ C-NMR spectrum (100 MHz, CDCl ₃) of 1-phenyl-1-propyl acetate	
Figure S56: ¹ H-NMR spectrum (400 MHz, CDCl ₃) of 2-heptyl acetate	40
Figure S57: ¹³ C-NMR spectrum (100 MHz, CDCl ₃) of 2-heptyl acetate	41

Tables

Table S1 :CHNS analysis of prepared material	7
Table S2 :investigation of catalytic performance of Fe ₃ O ₄ @SiO ₂ -S-XIm ⁺ HSO ₄ ⁻ in primary alcohols	13
Table S3: investigation of catalytic performance of Fe ₃ O ₄ @SiO ₂ -S-XIm ⁺ HSO ₄ ⁻ in secondary alcohol	s
	14
Table S4: CHNS analysis of fresh catalyst and 10 turn reused catalyst	18

Figure S1: Microemulsion method to prepare Fe_3O_4 (a)SiO₂ core-shell nanoparticles

Figure S2: Stabilization of 3-mercaptopropyltrimethoxysilane on Fe_3O_4 (a)SiO₂

Figure S3: Preparation method of 1,3,5-tris (vinylimidazolemethyl)benzene bromide

Fe₃O₄@SiO₂-S-xIm⁺Br⁻

Figure S4: Immobilization of ionic liquid on Fe₃O₄@SiO₂-SH

Fe₃O₄@SiO₂-S-xIm⁺HSO₄⁻

Figure S5: The method of exchanging hydrogen sulfate anion with bromide ion on $Fe_3O_4@SiO_2-S-xIm^+Br$ magnetic support

Figure S6: TG analysis of Fe₃O₄@SiO₂-SH

Figure S7: TG analysis of Fe₃O₄@SiO₂-S-xIm⁺Br⁻

Figure S8 : TG analysis of Fe₃O₄@SiO₂-S-xIm⁺HSO₄⁻

Table S1 : CHNS analysis of prepared material

Sample	S (%)	H (%)	N (%)	C (%)	Loading of organic
--------	-------	-------	-------	-------	--------------------

					species
Fe ₃ O ₄ @SiO ₂ -SH	2.06	0.5		2.66	0.64 mmol/gr ^a
Fe ₃ O ₄ @SiO ₂ -S- xIm ⁺ Br ⁻	2.122	0.849	2.103	9.63	0.75 mmol/ gr $^{\rm b}$
Fe ₃ O ₄ @SiO ₂ -S- xIm ⁺ HSO ₄ -	3.761	1.126	2.037	10.66	0.51 mmol/gr °

^a based on sulfur percentage of mercaptopropyltrimethoxysilane

^b based on nitrogen percentage of ionic liquid

^c based on sulfur percentage of hydrogen sulfate

Figure S9 :Nitrogen adsorption-desorption (a, BET isotherm of $Fe_3O_4@SiO_2$

Figure S10 :Nitrogen adsorption-desorption (a, BET isotherm of Fe_3O_4 (a)SiO₂-SH

Figure S11:Nitrogen adsorption-desorption (a, BET isotherm of Fe_3O_4 (a)SiO₂-S-xIm⁺Br⁻

Figure S12 :Nitrogen adsorption-desorption (a, BET isotherm of Fe_3O_4 (a)SiO₂-S-xIm⁺HSO₄⁻

Figure S13 :FT-IR spectra for Fe_3O_4 (a)SiO₂ core-shell nanoparticle

Figure S14 :FT-IR spectra for Fe₃O₄@SiO₂-SH

Figure S15 :FT-IR spectra for Fe₃O₄@SiO₂-S-xIm⁺Br⁻

Figure S16 :FT-IR spectra for Fe₃O₄@SiO₂-S-xIm⁺HSO₄⁻

Figure S17 : The VSM curves of Fe₃O₄@SiO₂

Figure S19 : The VSM curves of Fe₃O₄@SiO₂-S-xIm⁺Br⁻

Figure S20 : The VSM curves of Fe₃O₄@SiO₂-S-xIm⁺HSO₄⁻

	́он + Но́	$\bigcup_{CH_3}^{O} Fe_3O_4@S$	GiO ₂ -S-xIm ⁺ HS		O CH ₃
1mmo	1				
Entry	Catalyst (mol%)	Temp (°C)	Time (h)	Acetic acid (mmol)	Yield (%)
1	5	45	10	2.5	15
2	5	45	20	2.5	29
3	5	45	40	2.5	76
4	1	45	40	2.5	27
5	1	65	40	2.5	76
6	1	75	40	2.5	98
7	0.5	75	40	2.5	79
8	0.5	85	40	2.5	100
9	0.5	85	5	2.5	53
10	0.5	85	10	2.5	55
11	0.5	85	15	2.5	75
12	0.5	85	20	2.5	83
13	0.5	85	25	2.5	98
14	0.5	85	30	2.5	100
15	0.2	85	1	2.5	12
16	0.2	85	2	2.5	16
17	0.2	85	3	2.5	26
18	0.2	85	4	2.5	32
19	0.2	85	5	2.5	35
20	0.2	85	8	2.5	44
21	0.2	85	10	2.5	66
22	0.2	85	12	2.5	74
23	0.2	85	15	2.5	79
24	0.2	85	20	2.5	82
25	0.2	85	23	2.5	86
26	0.2	85	25	2.5	87
27	0.2	85	30	2.5	89
28	0.2	85	35	2.5	94

Table S2 : investigation of catalytic performance of Fe_3O_4 (a)SiO₂-S-XIm⁺HSO₄⁻ in primary alcohols

29	0.2	85	40	2.5	100
30	0.5	85	40	1.5	63
31	0.2	85	40	1.5	65
32	0.5	85	10	5	86
33	0.5	85	15	5	100
34	0.5	85	20	5	100
35	0.5	85	25	5	100
36	0.2	85	10	5	94
37	0.2	85	15	5	100
38	0.2	85	20	5	100
39	0.2	85	25	5	100
40	0.1	85	15	5	98
41	0.1	85	24	5	100

Table S3: investigation of catalytic performance of $Fe_3O_4@SiO_2-S-XIm^+HSO_4^-$ *in secondary alcohols*

OH + 1mmol	HO CH ₃ Fe ₃ O ₄ (ØSiO₂-S-xIm ⁺ HSC 85 ^{° C}		CH ₃
Entry	Catalyst (mol%)	Time (h)	Acetic acid (mmol)	Yield (%)
1	0.1	15	5	55
2	0.2	15	5	57
3	0.2	24	5	63
4	0.3	15	5	52
5	0.3	20	5	60
6	0.3	24	5	61
7	0.2	15	7	63
8	0.2	20	7	68
9	0.2	24	7	73
10	0.1	15	7	69
11	0.1	24	7	90
12	0.1	15	10	75
13	0.1	24	10	90

Figure S21:TG analysis of Re- Fe₃O₄@SiO₂-S-xIm⁺HSO₄⁻

Figure S22: Comparison of TG analysis of $Fe_3O_4@SiO_2-S-xIm^+HSO_4^-$ (a) and $Re-Fe_3O_4@SiO_2-S-xIm^+HSO_4^-$ (b)

Figure S23: Nitrogen adsorption-desorption (a, BET isotherm of $Re-Fe_3O_4$ @SiO₂-S- $xIm^+HSO_4^-$

Figure S24: FT-IR spectra for Re-Fe₃O₄@SiO₂-S-xIm⁺HSO₄⁻

Figure **S25:** Competition FT-IR spectra of $Re-Fe_3O_4@SiO_2-S-xIm^+HSO_4^-$ (a) with $Fe_3O_4@SiO_2-S-xIm^+HSO_4^-$ (b)

Sample	S (%)	Н (%)	N (%)	C (%)	Loading of acidic group
Fe ₃ O ₄ @SiO ₂ -S-xIm ⁺ HSO ₄ ⁻	3.761	1.126	2.037	10.66	0.51 mmol/gr
Re- Fe ₃ O ₄ @SiO ₂ -S-xIm ⁺ HSO ₄ ⁻	3.438	1.251	1.993	11.21	0.41 mmol/gr

Table S4: CHNS analysis of fresh catalyst and 10 turn reused catalyst

Figure S26:. The VSM curves of Re-Fe₃O₄@SiO₂-S-xIm⁺HSO₄⁻

Figure S27: Competition VSM curves of Fe_3O_4 (a) SiO₂-S-xIm⁺HSO₄⁻ (a) and Re-Fe₃O₄ (a) SiO₂-S-xIm⁺HSO₄⁻ (b)

White powder, ¹H NMR (400MHz, DMSO) $\delta_{\rm H} = 9.90$ (s, 1H), 8.33 (s, 1H), 8.07 (s, 1H), 7.72 (s, 1H), 7.41 (dd, 1H), 6.06 (d, 1H), 5.56 (s, 2H), 5.46 (d.d, 1H), 2.52 (s, 2H): ¹³C NMR (101 MHz, DMSO) $\delta_{\rm c} = 136.21$, 129.85, 129.33, 123.90, 119.88, 109.44, 52.07, 40.00.

Figure S28: ¹*H-NMR spectrum (400 MHz, DMSO-d₆) of 1,3,5tris(vinylimidazolemethyl)benzene bromide ionic liquid*

Figure S29: ¹³C-NMR spectrum (100 MHz, DMSO-d₆) of 1,3,5tris(vinylimidazolemethyl)benzene bromide ionic liquid

¹H NMR (400 MHz; CDCl₃): $\delta_{\rm H}$ = 4.09 (t, 2H), $\delta_{\rm H}$ = 2.04 (d, 3H), $\delta_{\rm H}$ = 1.62 (s, 2H), $\delta_{\rm H}$ = 1.30 (d, 6H), $\delta_{\rm H}$ = 0.88 (s, 3H); ¹³C NMR (100 MHz; CDCl₃): $\delta_{\rm C}$ = 171.17, 64.61, 32.70, 28.90, 28.59, 25.85, 25.55, 20.96, 14.02.

Figure S30: ¹H-NMR spectrum (400 MHz, CDCl₃) of heptyl acetate

Figure S31: ¹³C-NMR spectrum (100 MHz, CDCl₃) of heptyl acetate

¹H NMR (400 MHz; CDCl₃): $\delta_{\rm H}$ = 4.06 (t, 2H), $\delta_{\rm H}$ = 2.01 (s, 3H), $\delta_{\rm H}$ = 1.60 (m, 2H), $\delta_{\rm H}$ = 1.25 (m, 2H), $\delta_{\rm H}$ = 0.88 (t, 3H): ¹³C NMR (100 MHz; CDCl₃): $\delta_{\rm C}$ = 170.83, 64.59, 60.31, 31.73, 28.98, 28.41, 25.86, 22.58, 20.91, 14.30.

Figure S33: ¹³C-NMR spectrum (100 MHz, CDCl₃) of octyl acetate

¹H NMR (400 MHz; CDCl₃): $\delta_{\rm H}$ = 4.05 (t, 2H), $\delta_{\rm H}$ = 2.02 (s, 3H), $\delta_{\rm H}$ = 1.55-1.68 (m, 2H), $\delta_{\rm H}$ = 1.10-1.49 (m,14H), $\delta_{\rm H}$ = 0.86 (t, 3H); ¹³C NMR (100 MHz; CDCl₃): $\delta_{\rm C}$ = 171.15, 64.59, 53.36, 31.75, 29.49, 29.17, 28.59, 25.88, 25.84, 22.53, 20.88, 13.97.

Figure S34: ¹H-NMR spectrum (400 MHz, CDCl₃) of decyl acetate

Figure S35: ¹³C-NMR spectrum (100 MHz, CDCl₃) of decyl acetate

¹H NMR (400 MHz; CDCl₃): $\delta_{\rm H} = 4.07$ (t, 2H), $\delta_{\rm H} = 2.06$ (s, 3H), $\delta_{\rm H} = 1.54$ -1-65 (m, 2H), $\delta_{\rm H} = 1.14$ -1.42 (m, 18H), $\delta_{\rm H} = 0.88$ (t, 3H); ¹³C NMR (100 MHz; CDCl₃): $\delta_{\rm C} = 171.25$, 64.67, 31.92, 29.65, 29.63, 29.58, 29.53, 29.35, 29.27, 28.61, 25.92, 22.69, 21.01, 14.11.

Figure S36: ¹H-NMR spectrum (400 MHz, CDCl₃) of dodecyl acetate

Figure S37: ¹³C-NMR spectrum (100 MHz, CDCl₃) of dodecyl acetate

¹H NMR (400 MHz; CDCl₃): $\delta_{\rm H} = 7.25-7.41$ (m, 5H), $\delta_{\rm H} = 5.16$ (s, 2H), 2.15 (s, 3H); ¹³C NMR (100 MHz; CDCl₃): $\delta_{\rm C} = 170.92$, 146.75, 136.99, 128.62, 128.32, 128.30, 126.99, 66.34, 21.04.

Figure S38: ¹H-NMR spectrum (400 MHz, CDCl₃) of benzyl acetate

Figure S39: ¹³C-NMR spectrum (100 MHz, CDCl₃) of benzyl acetate

¹H NMR (400 MHz; CDCl₃): $\delta_{\rm H} = 7.33$ (d, H), $\delta_{\rm H} = 6.92$ (t, 2H), $\delta_{\rm H} = 5.08$ (s, 2H), $\delta_{\rm H} = 3.81$ (s, 3H); ¹³C NMR (100MHz; CDCl₃): $\delta_{\rm C} = 171.03$, 159.72, 130.18, 129.46, 128.08, 114.16, 71.48, 66.17, 55.31, 21.11.

Figure S40: ¹H-NMR spectrum (400 MHz, CDCl₃) of 4-methoxybenzyl acetate

Figure S41: ¹³C-NMR spectrum (100 MHz, CDCl₃) of 4-methoxybenzyl acetate

¹H NMR (400 MHz; CDCl₃): $\delta_{\rm H}$ = 7.29- 7.36 (m, 4H), $\delta_{\rm H}$ = 5.08 (s, 2H), $\delta_{\rm H}$ = 2.11 (s, 3H); ¹³C NMR (100 MHz; CDCl₃): $\delta_{\rm C}$ = 170.84, 134.49, 134.13, 129.66, 128.76, 128.24, 65.48, 64.32, 20.95.

Figure S42: ¹H-NMR spectrum (400 MHz, CDCl₃) of 4-chlorobenzyl acetate

Figure S43: ¹³C-NMR spectrum (100 MHz, CDCl₃) of 4-chlorobenzyl acetate

¹H NMR (400 MHz, CDCl₃); $\delta_{\rm H}$ = 8.24 (d, 1H), $\delta_{\rm H}$ = 7.57 (d.d, 2H), $\delta_{\rm H}$ = 5.23 (s, 2H), $\delta_{\rm H}$ = 2.18 (s, 3H): ¹³C NMR (100 MHz, CDCl₃); $\delta_{\rm C}$ = 170.57, 143.24, 128.40, 127.00, 123.81, 123.73, 64.79, 64.00, 20.85.

Figure S44: ¹H-NMR spectrum (400 MHz, CDCl₃) of 2,4-chlorobenzyl acetate

Figure S45: ¹³C-NMR spectrum (100 MHz, CDCl₃) of 2,4-chlorobenzyl acetate

¹H NMR (400 MHz, CDCl₃); $\delta_{\rm H}$ = 7.23-7-36 (m, 5H), $\delta_{\rm H}$ = 4.12 (t, 2H), $\delta_{\rm H}$ = 2.74 (q, 2H), $\delta_{\rm H}$ = 2.10 (s, 3H), $\delta_{\rm H}$ = 1.97-2.05 (m, 2H): ¹³C NMR (100 MHz, CDCl₃); $\delta_{\rm C}$ = 171.23, 140.98, 128.49, 128.44, 126.06, 63.95, 34.31, 31.96, 30.23, 20.99, 14.24.

Figure S46: ¹H-NMR spectrum (400 MHz, CDCl₃) of 1-phenyl-3-propyl acetate

Figure S47: ¹³C-NMR spectrum (100 MHz, CDCl₃) of 1-phenyl-3-propyl acetate

¹H NMR (400 MHz, CDCl₃); $\delta_{\rm H}$ = 7.30-7.44 (m, 5H), $\delta_{\rm H}$ = 6.67 (d, 1H), $\delta_{\rm H}$ = 6.29-6.36 (m, 1H), $\delta_{\rm H}$ = 4.76 (q, 2H), $\delta_{\rm H}$ = 2.15 (s, 3H): ¹³C NMR (100 MHz, CDCl₃); δ C = 170.87, 136.22, 134.24, 128.04, 128.11, 126.64, 123.19, 65.11, 31.62, 21.03, 14.16.

Figure S49: ¹³C-NMR spectrum (100 MHz, CDCl₃) of cinnamyl acetate

¹H NMR (400 MHz, CDCl₃); $\delta_{\rm H}$ = 4.75 (m, 1H), $\delta_{\rm H}$ = 2.03 (s, 3H), $\delta_{\rm H}$ = 1.71-1.86-1.28 (m, 10H) ; ¹³C NMR (100 MHz, CDCl₃); δ C = 170.65, 77.43, 72.69, 31.64, 31.39, 25.36, 23.80, 23.27, 21.42.

Figure S50: ¹H-NMR spectrum (400 MHz, CDCl₃) of cyclohexyl acetate

Figure S51: ¹³C-NMR spectrum (100 MHz, CDCl₃) of cyclohexyl acetate

¹H NMR (400 MHz, CDCl₃); $\delta_{\rm H}$ = 4.89- 4.95 (m, 1H), $\delta_{\rm H}$ = 2.03 (s, 3H), $\delta_{\rm H}$ = 1.88-1.94 (m, 4H), $\delta_{\rm H}$ = 1.25-1.69 (m, 10H): ¹³C NMR (100 MHz, CDCl₃); δ C = 170.56, 75.18, 72.76, 37.80, 33.81, 28.28, 28.11, 22.87, 22.62, 21.51.

Figure S52: ¹H-NMR spectrum (400 MHz, CDCl₃) of cyclooctyl acetate

Figure S53: ¹³C-NMR spectrum (100 MHz, CDCl₃) of cyclooctyl acetate

¹H NMR (400 MHz, CDCl₃); $\delta_{\rm H} = 7.41$ (t, 5H), $\delta_{\rm H} = 5.73$ (t, 2H), $\delta_{\rm H} = 2.08$ (s, 3H), $\delta_{\rm H} = 1.79$ -1.99 (m, 2H), $\delta_{\rm H} = 0.91$ -0.98 (m, 3H): ¹³C NMR (100 MHz, CDCl₃); $\delta C = 170.54$, 144.69, 140.56, 128.41, 127.97, 126.34, 125.79, 31.67, 29.33, 21.29, 9.96.

Figure S54: ¹H-NMR spectrum (400 MHz, CDCl₃) of 1-phenyl-1-propyl acetate

Figure S55: ¹³C-NMR spectrum (100 MHz, CDCl₃) of 1-phenyl-1-propyl acetate

¹H NMR (400 MHz, CDCl₃); $\delta_{\rm H}$ = 4.94 (q, 1H), $\delta_{\rm H}$ = 2.05 (s, 3H), $\delta_{\rm H}$ = 1.58 (s, 2H), $\delta_{\rm H}$ = 1.22-1.50 (m, 9H), $\delta_{\rm H}$ = 0.89 (d, 3H):): ¹³C NMR (100 MHz, CDCl₃); δ C = 170.86, 71.11, 68.21, 35.90, 31.65, 25.09, 22.56, 21.42, 19.98, 14.02.

Figure S56: ¹H-NMR spectrum (400 MHz, CDCl₃) of 2-heptyl acetate

Figure S57: ¹³C-NMR spectrum (100 MHz, CDCl₃) of 2-heptyl acetate