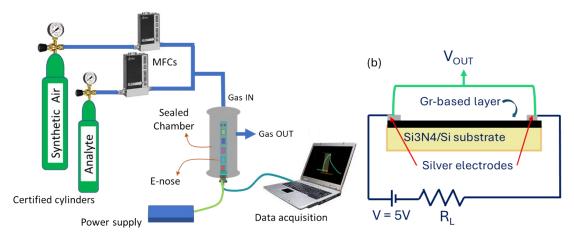
SUPPORTING INFORMATIONS to:

Selective enhancement of graphene ammonia sensing by electrochemical palladium nanoparticle decoration: *ab-initio* insight on the sensing response

Sonia Freddi ^{1,2,*}, Pilar Carro³, Alberto Hernandez Creus ³, Luigi Sangaletti ², Miriam C. Rodriguez Gonzalez ^{3,*}

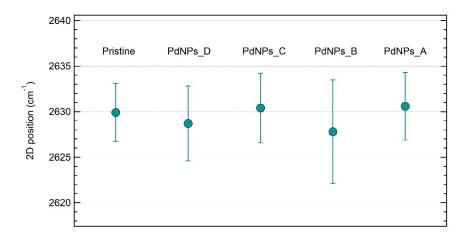
CONTENT:

- 1. Gas measurement set up.
- 2. Raman maps and AFM size distribution.
- 3. Benchmarking with literature and Freundlich fitting parameters.
- 4. Theoretical calculation.


¹ Institute of Photonics and Nanotechnologies - Consiglio Nazionale delle Ricerche (IFN CNR), Laboratory for Nanostructure Epitaxy and Spintronics on Silicon (LNESS), Via Anzani 42, 22100 Como, Italy

² Surface Science and Spectroscopy Lab at I-Lamp, Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, via della Garzetta 48, 25133 Brescia (Italy)

³ Área de Química Física, Departamento de Química, Instituto de Materiales y Nanotecnología (IMN), Universidad de La Laguna (ULL), 38200 La Laguna (Spain)


^{*}Correspondence to be sent to: sonia.freddi@cnr.it, mrodrgon@ull.edu.es

1. Gas measurement set up

Figure S1: a) Schematic representation of the set up used for the gas exposures. The system comprises a sealed steal homemade chamber, connected to 2 mass flow controllers (MFCs) and a PC for data acquisition, a cylinder filled with synthetic air and a cylinder with the target gas molecules. The sensor array is hosted inside the chamber. The MCF connected to the air cylinder has a maximum flow of 500 sccm, while the max flow of the MFC connected to the analyte cylinders is 200 sccm. b) schematic representation of the readout scheme of each sensor.

2. Raman maps and AFM size distribution

Figure S2. Results obtained from the Raman maps of the 2D-band collected on several areas of the samples. No shift towards higher or lower wavenumber is observed for the decorated samples compared to the pristine position, indicating that the functionalization does not alter the doping nature of the graphene layer.

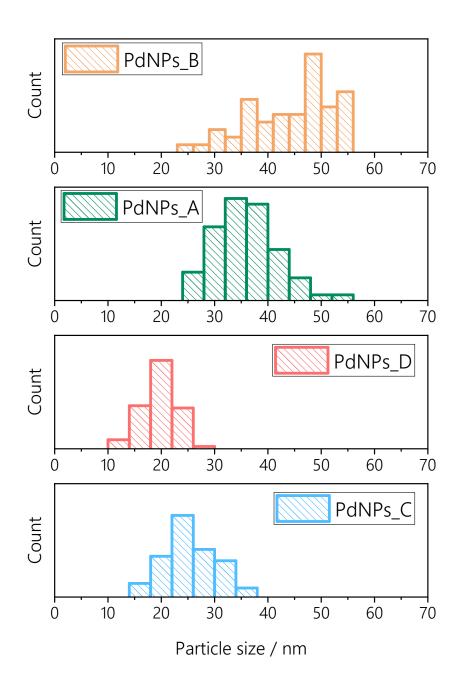


Figure S3: size distribution of the Pd NPs obtained from several AFM images.

3. Benchmarking with literature and Freundlich fitting parameters

Table S1: pow and A parameters obtained from the Freundlich isotherm interpolation of each sensor calibration curve for NH_3 exposures, reported in **Figure 3** of the main text.

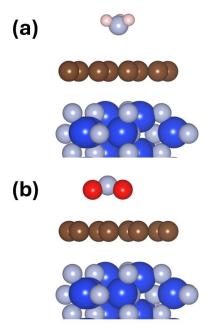

Sample name	pow	A		
Pristine	0.53 ± 0.09	0.0020 ± 0.0006		
PdNPs_D	0.59 ± 0.05	0.0235 ± 0.0002		
PdNPs_C	0.59 ± 0.08	0.0210 ± 0.0008		
PdNPs_B	0.83 ± 0.07	0.0072 ± 0.0003		
PdNPs_A	0.92 ± 0.09	0.0048 ± 0.0007		

Table S2: Benchmarking for dynamical tested range, sensitivity S range (S=($|\Delta R/R_0| \times 100$)/[gas]), detection limit (dl) and response and recovery times of the prepared samples, against the values for other graphene-based chemiresistors reported in the literature.[Refs 14,64-80 in the main text] Of note: only articles reporting gas concentration and sensor response/sensitivity have been taken into account for this benchmarking

Sensor type	Gas: dynamic tested range (ppm)	Sensitivity range (%ppm ⁻¹)	Detection limit (ppb)	Response time	Recovery time	Reference
PdNPs_A	0.5 – 24.3	0.71 – 0.34	42	100sec	13min	Present work
				@0.92ppm	@0.92ppm	11000Ht WOIR
PdNPs_B	0.5 – 24.3	0.87 – 0.39	32	100sec	15min	Present work
				@0.92ppm	@0.92ppm	
PdNPs_C	0.5 – 24.3	1.52 – 0.46	13	100sec	25min	Present work
				@0.92ppm	@0.92ppm	
PdNPs_D	0.5 – 24.3	2.62 – 0.52	6	100sec	24min	Present work
				@0.92ppm	@0.92ppm	
Gr_CoPt	2.2 – 36.0	0.8 – 0.24	0.1	-	15 min	77
					@36ppm	
Gr_CuPR	0.2 – 14.0	0.62 - 0.12	5	30 sec	700 sec	80
				@13.6ppm	@13.6ppm	
Gr-NiPc	0.04 - 4.7	8.6 – 0.5	3	132 sec	11 min	79
				@2.7ppm	@2.7ppm	
NiPc-Gr	5.0 - 10.0	0.45 - 0.15	-	-	-	78
Gr_NiPc	0.5 - 13.6	0.64 - 0.11	50	-	2.5 min	14

					@3.7ppm	
Gr-TCN	0.85 –	6.3 – 1.5	4.2	50 sec	8 min	76
	22.5			@11ppm	@11ppm	
Gr_NBD	0.05 - 8.4	10.78 - 0.45	-	-	-	75
Bare Gr	150 –	0.03-	1600	-	-	74
	1000	0.0185				
B-doped Gr	16 – 256 0	0.12 - 0.09	-	0.85 sec		73
		0.12 - 0.07		@32 ppm	_	
CVD graphene	100 – 800	0.05-0.01	-	7 min	15 min	72
				@100ppm	@100ppm	
Laser written Gr	75 – 400	0.04 - 0.075	-	-	-	71
B-doped Gr	1 – 20	0.04 -0.042	59.9	-	-	70
TiO2@PPy-GN	10 – 200 2.4 –1.	2 4 _1 3	1.3 1000	36 sec	16min	69
		2.4-1.5		@50ppm	@50ppm	
Graphene/mica	20 - 500	0.05 - 0.04	-	-	-	68
graphene– PEDOT:PSS	25 – 1000 0.2 – 0.019	0.2 _ 0.019	10000	3 min	6 min	67
		10000	@25 ppm	@25ppm		
graphene/PANI	1 – 6400 0.05	0.05 - 0.20	1000	50 sec	23 sec @	66
		0.03 - 0.20		@20ppm	20ppm	
CVD graphene	0.5 - 1000 0.03 - 0.91	0.03 - 0.91	500	-	140 min	65
		0.03 - 0.71			@10ppm	
Gr_AuNPs	15 – 58 0.18 – 0	0.18 - 0.14	-	-	54 min	64
		0.10 - 0.14			@58ppm	

4. Theoretical calculation

 $\textbf{Figure S4} \hbox{:} \ Side \ view \ of the \ adsorption \ of (a) \ ammonia \ and (b) \ nitrogen \ dioxide \ on \ graphene \ on \ Si_3N_4 \ surface.$