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S1 Simulation procedure

S1.1 Point spread function (PSF) density

To investigate the effect of point spread function (PSF) density σPSF on PSF detection

accuracy, the ThunderSTORM simulation engine was used to generate PSFs over 100 frames

for a given density.S1 The input parameters used in the simulations are listed in Table S1.

The generated PSFs serve as ground truth positions. Simulated raw data were analyzed

using ThunderSTORM to localize PSFs in each frame. The resulting localizations were then

compared to the ground truth and evaluated in terms of true positives (TP), false positives

(FP), and false negatives (FN), using the following metrics:

r =
TP

TP + FN
p =

TP

TP + FP
F1 =

2pr

p+ r
(S1)

Here, recall r quantifies the fraction of ground truth PSFs correctly detected, while preci-

sion p reflects the proportion of correct detections among all localized PSFs. The F1 score

combines both into a single performance metric, where values near 0 indicate poor detection

performance and values close to 1 indicate high accuracy. In this study, the F1 score is used

as a measure of PSF detection accuracy.

Table S1: Input values for ThunderSTORM simulation engine.

Field of view width (µm) 30
Field of view height (µm) 30
Frames 100
PSF width (nm) 100 to 200
PSF intensity (photon) 400 to 20000
Mean photon background (photon) 30
PSF density σPSF (µm−2) 0.01 to 2.5
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S1.2 Localization cloud density and spatial distribution

To investigate the effect of localization cloud density σcloud on cloud identification accuracy

and to examine the factors influencing quantified spatial distribution, spatial point patterns

were simulated with a given molecular density σmol and a predefined spatial distribution,

characterized by an average nearest-neighbor distance D1. A subset of molecular positions

was randomly selected according to a specified molecular sampling ratio sr, and localizations

were generated around these sampled positions using a Gaussian distribution with a standard

deviation of 8 nm, reflecting experimentally measured localization uncertainty.S2 The number

of localizations generated are sampled from an exponential distribution with a characteristic

bound state lifetime of 1 s, corresponding to a molecular dissociation rate koff of 1 s−1. For

evaluating localization cloud identification accuracy, full sampling (sr = 1) was assumed.

Ground-truth labels were assigned to each simulated localization. Mean-shift clustering

with a bandwidth of 30 nm was applied to identify localization clouds. The adjusted Rand

index was used to compare the clustering results with ground-truth labels, and is referred

to as the localization cloud identification accuracy.S3 The input values for generating the

simulated data is summarized in Table S2.

To assess spatial distribution for both true and estimated molecular positions, a nearest-

neighbor distance-based statistical test—the Clark–Evans test—was applied to evaluate de-

viations from complete spatial randomness (CSR).S4 The test compares the observed average

nearest-neighbor distance D1 to the expected value µ̂ under CSR and determines whether

the pattern is significantly clustered or dispersed. To mitigate edge effects, nearest-neighbor

distances from points within the outer 10% boundary of the region of interest were excluded

from the statistics. To satisfy the independence assumption of D1, N subsets of size m were

randomly sampled from the nearest-neighbor distance set to compute mean values:

dm
j
=

1

m

m∑
i=1

D̃1
i for D̃1

i ⊂ D1 (S2)
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With this, the standardized mean nearest neighbor distance zm, also denoted as the distri-

bution score, can be computed via

zm =
1

N

N∑
j=1

dm
j − µ̂

σ̂
µ̂ =

1

2
√
λ

σ̂ =

√
4− π

m4πλ
(S3)

where λ denotes the point density, µ̂ the expected mean nearest-neighbor distance, σ̂ the

standard deviation of the expected mean nearest-neighbor distance. The distribution score

is tested against the distribution score of a CSR point pattern at a 5% significance level

z0.05 = 1.65, giving

zm < −z0.05 : Significant clustering

zm > z0.05 : Significant dispersion
(S4)

Table S2: Input values to generate simulated data. *Note that, when studying localization
cloud identification accuracy, sr is set to 1.

Values
True molecular density σmol (µm−2) 0.1 to 500
True distribution score -18 to 18
Molecular sampling ratio sr 0.1 to 1*
Average localization uncertainty (nm) 8
Analysis search region (nm) 30
koff (s−1) 1

S1.3 Binding event density

In previous work, a simulation-based method known as Biomolecule Sampling Compensation

(BiSC) analysis was developed to estimate surface molecular density from experimentally ob-

served binding event density.S2 BiSC compensates for the effect of biomolecule undersampling

in molecular quantification by simulating binding dynamics using Monte Carlo methods.

In this approach, signal time traces for each biomolecule within a region of interest of

area A and acquisition duration t are simulated. Each time trace consists of alternating
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bound and unbound states, with lifetimes governed by the molecular association rate kon,

dissociation rate koff , and probe concentration cimg. The characteristic lifetimes are defined

as:

τb =
1

koff
τub =

1

kon · cimg

(S5)

where τb and τub denote the characteristic bound and unbound state lifetime respectively.

Bound and unbound durations are sampled from exponential distributions with the corre-

sponding lifetimes. The probability of a molecule being in the bound state is given by:

P(bound) =
cimg

cbinder +Kd

with Kd =
koff
kon

(S6)

where cbinder is the effective volumetric biomolecule concentration and Kd is the equilibrium

dissociation constant. The binding probability, P(bound), depends on both the probe con-

centration and hybridization kinetics (see Table S3). Time traces are generated with a 100

ms integration time. The total number of binding events observed per trace is summed and

normalized by the area A to compute the binding event density σevent. By varying σmol, a

linear relationship between σmol and σevent is established. Each simulation is repeated 20

times per σmol value, with parameter details summarized in Table S4.

Table S3: Dependence of the binding probability on imager strand concentration and hy-
bridization kinetics.

cbinder Kd P(bound)
≪ cimg ≪ cimg 1
≪ cimg ≫ cimg cimg/Kd

≫ cimg ≪ cbinder cimg/cbinder
≫ cimg ≫ cbinder cimg/Kd

To assess the accuracy of the estimated molecular density σ̂mol, a bootstrapping proce-

dure is applied: simulated datasets are resampled with replacement, and linear regression is

performed on each resampled set. Each model is then used to predict σ̂mol for a fixed σevent,

S-6



Table S4: Input parameters for BiSC analysis.

Value
koff (s−1) 0.1, 1, 10
kon (M−1 s−1) 5× 104 to 107

cimg (M) 2.5× 10−11

t (min) 30, 60, 90
Integration time (s) 0.1
σmol (µm−2) 10 to 2000

repeated 1000 times. Relative residuals are computed as:

rri =
σ̂mol i − σ̂mol

σ̂mol

for i ∈ [1, 1000] (S7)

where rri denotes the relative residual and σ̂mol is the mean of the estimated densities. The

standard deviation of the relative residuals is taken as the measure of counting accuracy. In

Figure 2(C)(ii), varying combination of probe kinetic constants and imaging parameters are

used to derive the relationship between σmol and the minimum binding event density σmin
event

required for molecular quantification accuracy of at least 90%. Table S5 summarizes the

conditions used.

Table S5: Combinations of probe kinetic constants and acquisition duration used in Figure
2(C)(ii).

σmol (µm
−2) σmin

event (µm
−2) kon (M−1 s−1) koff (s−1) t (min)

15.23 13.17 107 1 60
16.60 7.83 5× 106 1 60
28.64 2.97 106 0.1 60
30.42 4.00 106 1 60
31.53 1.68 106 1 90
32.33 2.92 106 10 60
42.25 1.85 106 1 30
45.61 2.03 5× 105 1 60
59.83 0.89 2× 105 1 60
86.31 0.71 105 1 60
92.06 0.58 7× 104 1 60
93.34 0.29 5× 104 1 60
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S1.4 Neural network surrogate model

To reduce computational cost, a neural network (NN) surrogate model was trained using

data generated from the Monte Carlo simulations described in the previous section.S5 The

simulation outputs include point spread function density σPSF, localization cloud density

σcloud, and binding event density σevent. A total of 3500 datasets, corresponding to different

combinations of input parameters (see Table S6), were used to train the NN model. The

neural network architecture consists of two hidden layers with 200 and 100 neurons, respec-

tively. The rectified linear unit (ReLU) was used as the activation function in the hidden

layers.S6 No explicit regularization was applied during training.

Table S6: The input parameters used to generate PAINT outputs via the Monte Carlo simu-
lations were sampled uniformly within defined ranges [min,max] for N values per parameter.
The PAINT simulated data is used to train the NN model.

Min Max # samples
kon (M−1 s−1) 103 107 5
koff (s−1) 10−4 100 5
cimg (M) 10−12 10−9 4
t (min) 10 110 5
σmol (µm−2) 0.1 2700 7
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Figure S1: The training loss (left), defined as mean squared error, decreases consistently with
increasing epochs, indicating effective model fitting. The validation score (right), measured
by the coefficient of determination (R2), remains high throughout and plateaus at later
stages, confirming that the neural network was successfully trained without overfitting.

Figure S1 shows the training progression, where the loss, defined as the mean squared
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error, decreases over epochs. Validation performance was tracked using the coefficient of

determination R2, defined as:

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − y)2
(S8)

As training progresses, R2 improves and eventually plateaus. In cases of overfitting, the

validation score may decline during later stages of training.

S2 Factors affecting localization cloud quantification limit

The results presented in this article (Figure 2(B)) for determining the localization cloud

identification limit are based on experimentally measured localization uncertainty, molecular

dissociation rate, and the search region used in mean-shift clustering. Here, the influence of

these parameters on the quantification limit—specifically the maximum localization cloud

density σmax
cloud identifiable with at least 90% accuracy—is systematically evaluated.

As shown in Figure S2, the molecular dissociation rate koff , which influences the average

number of localizations per localization cloud, has negligible impact on σmax
cloud. In contrast,

reducing localization uncertainty (i.e., decreasing the standard deviation of the Gaussian

distribution from which localization coordinates are sampled) increases σmax
cloud. This indi-

cates that, for a given spatial distribution, a greater number of localization clouds can be

reliably identified when localizations are determined with higher precision. This result is

expected, as better localization precision reduces the spatial overlap between nearby local-

ization clouds. However, the benefit of improved localization precision is less pronounced in

clustered molecular distributions. Even with high localization accuracy, σmax
cloud increases only

marginally under strong clustering, suggesting that spatial overlap remains a limiting factor

in such systems. As previously shown in,S2 an optimal search region exists for mean-shift

clustering. Varying the search region for data generated with 8 nm localization uncertainty

confirms this: σmax
cloud initially increases with search region size but decreases beyond an opti-

mal point, due to merging of distinct localization clouds.
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In experimental settings, the search region is often selected empirically through visual

inspection of clustering results. Alternatively, it can be guided by the observed localization

uncertainty, with a typical rule of thumb being twice the maximum measured uncertainty.

Figure S2: Effects of molecular dissociation rate koff , localization uncertainty and mean-shift
clustering search region on the localization cloud identification limit.

S3 Areas of interpretability in quantified distribution scores

In Figure 3, regions of interpretability are identified—combinations of true surface molecular

density σmol and molecular sampling ratio sr for which quantified spatial distributions can

be confidently interpreted. These regions vary with the underlying true spatial distribution.

Figures S3 and S4 illustrate how the size and shape of these interpretability regions evolve

across different spatial distributions. Notably, clustered systems exhibit substantially smaller

interpretability areas compared to random and dispersed systems. As the true distribution

approaches complete spatial randomness (i.e., distribution score near zero), the area of in-

terpretability narrows, indicating that fewer combinations of σmol and sr yield statistically

interpretable distribution scores.

The significantly smaller interpretability regions observed for clustered systems, compared

to random and dispersed systems, highlight a key limitation of PAINT in quantifying spatial

distributions under clustered molecular arrangements. While this may not always be a
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critical drawback, particularly when alternative molecular targets such as linker molecules

provide more interpretable spatial information, the challenge becomes more pronounced

when a high-density, clustered system is the object of interest. In such cases, expanding the

interpretability region is essential for reliable distribution quantification.

One approach to achieve this is by increasing the spatial resolution of PAINT, for instance

through the use of RESI (Resolution Enhancement by Sequential Imaging).S7 The impact of

enhanced PAINT resolution is shown in Figure S5. Here, localization coordinates are sampled

from a Gaussian distribution with a standard deviation of 0.8 nm, tenfold lower than the 8

nm uncertainty used throughout this study. To ensure consistency, the mean-shift clustering

search region is also reduced proportionally to 3 nm.

As shown in Figure S5, the area of interpretable quantified distribution scores expands

considerably for a system with comparable clustering (true distribution score = -18.63), al-

lowing a wider range of σmol and sr combinations to yield statistically interpretable results.

However, it is important to note that experimental methods enabling such high resolution of-

ten suffer from poor scalability with molecular density and may require prolonged acquisition

times (ranging from hours to days) to collect sufficient statistics for robust quantification.

This underscores the fundamental trade-off between imaging parameters and surface molec-

ular complexity in achieving high-throughput and precise quantification in PAINT.
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Figure S3: Contour map of observed distribution score as a function of true molecular density
σmol, molecular sampling ratio sr, and true spatial distribution. The black line indicates the
maximum allowable sampling ratio, defined by the localization cloud identification limit.
Red dotted lines mark the distribution score thresholds corresponding to the 5% significance
level, distinguishing significantly clustered or dispersed distributions from complete spatial
randomness. Distribution score less than -z0.05 (-1.65) indicates clustering, while distribution
score more than z0.05 indicates dispersity.
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Figure S4: Area of interpretable quantified distribution scores as a function of true molecular
density σmol and molecular sampling ratio sr, across varying true spatial distributions. The
shaded regions indicate combinations of σmol and sr for which the observed distribution
score can be confidently interpreted, based on statistical significance and localization cloud
identification accuracy. Distribution score less than -z0.05 (-1.65) indicates clustering, while
distribution score more than z0.05 indicates dispersity. Note: the x-axis scales differ between
plots.
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Figure S5: Contour maps of observed distribution scores and corresponding interpretability
regions as functions of true molecular density σmol and molecular sampling ratio sr for a
clustered system (true distribution score = -18.63). For the typical PAINT resolution case,
synthetic localizations are generated with a localization precision of 8 nm and identified using
a mean-shift clustering search region of 30 nm. For the high-resolution case, localizations are
generated with a precision of 0.8 nm and identified using a 3 nm search region. Shaded regions
indicate combinations of σmol and sr where the observed distribution score is statistically
interpretable.
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S4 Probe scores

S4.1 Range of molecular density quantifiable with at least 90% ac-

curacy per probe

Figure S6: Maps of minimum and maximum quantifiable molecular density σmol, and the
corresponding normalized quantifiable density range, for different combinations of true spa-
tial distribution and probe concentration cimg. (A) Quantification based on density accuracy
limits only. (B) Quantification based on both density accuracy limits and interpretability of
distribution scores.

Figure S6 shows the range of molecular densities σmol that can be quantified with at least

90% accuracy and interpretable distribution scores for a DNA probe with reference kinetics

of kon = 106 M−1 s−1 and koff = 1 s−1. For each probe concentration cimg and true spatial

distribution, the minimum and maximum quantifiable σmol values are determined based on
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the quantification limits and interpretability criteria established in Figures 2 and 3. The

resulting density range is then normalized by the total simulated σmol range to produce a

map of the normalized quantifiable density range. This map is used throughout the study to

evaluate the impact of quantification constraints and probe kinetics, and serves as the basis

for calculating probe scores.

S4.2 Calculation of probe scores

A probe score is assigned to each probe based on its kinetic constants and is derived from the

map of quantifiable density range. When considering only the density quantification limit,

the normalized quantifiable density range is first averaged across all true spatial distributions

for each probe concentration cimg. The probe score is then defined as the maximum of these

mean values. When both density and spatial distribution quantification are considered,

the map is divided into three spatial regimes, namely clustered, random, and dispersed,

highlighted in red in Figure S7. For each regime, the mean normalized quantifiable density

range is calculated across cimg, and the maximum value is taken as the probe score.

This definition reflects the objective of identifying probes that support reliable quantifica-

tion over a broad range of true molecular densities σmol and spatial distributions, regardless

of the probe concentration used. A high probe score therefore indicates strong and versatile

quantification performance across varying experimental and molecular conditions.
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Figure S7: Maps of normalized quantifiable density range (top row) and corresponding mean
normalized quantifiable density range across varying probe concentrations (bottom row).
Probe scores are defined as the maximum of the mean values. (A) Quantification based on
density accuracy limits only. (B) Quantification based on both density accuracy limits and
interpretability of distribution scores.
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S4.3 Effect of quantification limit and probe kinetics

In this work, four quantification limits or criteria are proposed to ensure molecular quantifi-

cation with at least 90% accuracy, as summarized in Table S7. These limits impact the map

of normalized quantifiable density range differently depending on the probe kinetic constants.

Figure S8 illustrates how these limits sequentially affect the quantifiable density range for

four representative sets of probe kinetics.

The σmax
PSF limit constrains the range of probe concentrations cimg that support high-

accuracy quantification, particularly for probes with low koff or high kon. For example, a

probe with kon = 104 M−1 s−1 and koff = 1 s−1 enables a broad quantifiable density range

across a wide cimg interval. While the σmax
cloud limit has only a minor effect on the density map

within the simulated ranges of cimg and acquisition time, the σmin
event limit, which accounts for

the statistical requirement to overcome molecular undersampling, can substantially affect

the quantifiable range depending on probe kinetics. Probes with lower kon fail to generate

sufficient event statistics at low cimg, leading to regions with no quantifiable density (indicated

by black squares). One particularly interesting case is the probe with kon = 106 M−1 s−1

and koff = 0.1 s−1. Although a high cimg would typically support precise quantification,

this probe is strongly limited by the σmax
PSF constraint. Furthermore, very low densities at this

probe concentration do not yield sufficient event statistics, meaning that no quantifiable σmol

exists within this regime.

When the interpretability of spatial distribution is also considered, the quantifiable den-

sity map is further constrained by the required sampling ratio sr = σcloud/σmol. The map is

divided into three spatial regimes: clustered, random, and dispersed. For the random case,

the interpretability area aligns closely with the σmax
cloud constraint, and thus does not signifi-

cantly alter the trend. For dispersed systems, one might expect only minor impact due to

the broad interpretability region. However, in the four kinetic examples shown, certain re-

gions remain non-quantifiable because the minimum required sr is not met. In this case, the

sampling ratio is dictated by the statistical threshold necessary to classify the distribution as
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dispersed (i.e., distribution score ≥ z0.05). For clustered systems, quantifiable densities are

restricted to very low values due to the inherently narrow interpretability region. Notably,

the probe concentration range that allows precise quantification also varies significantly with

probe kinetics.

Figures S9 and S10 further illustrate how probe kinetics influence the map of quantifiable

density range under two scenarios: considering only density accuracy limits, and consider-

ing both density and distribution interpretability. Although the nine probes shown in these

figures have similar overall probe scores, the cimg regimes over which high-accuracy quan-

tification is achievable differ markedly. In some cases, the effective concentration window

becomes narrower, broader, or shifts depending on kinetic parameters. This emphasizes

the importance of tailoring imaging parameters to the specific kinetic characteristics of the

PAINT probe in use.

Table S7: Summary of quantification limit defined in this work.

Quantification
limit

Notes

1 σmax
PSF limit Avoid PSF overlap

2 σmax
cloud limit Avoid localization cloud overlap

3 σmin
event limit Ensure sufficient statistics

4 Area of interpretability Accurate estimates of molecular position
and statistical thresholding
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Figure S8: Evolution of the map of quantifiable density range as quantification limits are
applied sequentially. Four representative probe kinetics are shown to illustrate how each
limit, namely σmax

PSF, σmax
cloud, σmin

event, and the area of interpretability, progressively constrains
the range of molecular densities σmol that can be quantified with at least 90% accuracy.
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Figure S9: Effect of probe kinetics on the map of quantifiable density range when only
density accuracy is considered. The figure illustrates how different combinations of probe
association and dissociation rates influence the range of molecular densities σmol that can be
quantified with at least 90% accuracy. Each subplot is titled with the corresponding probe
score.
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Figure S10: Effect of probe kinetics on the map of quantifiable density range when density
accuracy and distribution interpretability is considered. The figure illustrates how different
combinations of probe association and dissociation rates influence the range of molecular
densities σmol that can be quantified with at least 90% accuracy. Each subplot is titled with
the corresponding probe score, reported for clustered, random, and dispersed distributions.
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S4.4 Effect of PAINT resolution

As shown in Figure S5, the area of interpretability expands significantly when higher PAINT

resolution is employed, as in the case of RESI. This expansion directly increases the nor-

malized quantifiable density range achievable for a given probe. Figure S11 illustrates the

effect of enhanced PAINT resolution across different probe kinetics, exemplified for a true

spatial distribution score of −18. Notably, higher resolution leads to a substantial increase

in quantifiable density range, up to approximately 60-fold for probes with high dissociation

rates (koff) across the simulated cimg range. Even for probes with lower koff values, the gain

remains significant, with an increase of roughly 20-fold. In the Figure, the maximum nor-

malized quantifiable density range is computed for each probe across the tested cimg range.

The results show a modest expansion in the range of kinetic parameters that support high-

accuracy quantification under clustered conditions. In particular, probes with higher koff

benefit more from increased resolution, enabling slightly broader quantification capability.

These findings reinforce that higher PAINT resolution can alleviate some of the limitations

associated with quantifying high-density, clustered molecular distributions.
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Figure S11: Effect of PAINT resolution on the quantifiable density range for clustered sys-
tems (true distribution score = -18). (Top row) Normalized quantifiable density ranges are
shown for four example probe kinetic constants, comparing typical PAINT resolution and
higher-resolution conditions. Black triangles indicate the maximum normalized quantifiable
density range for each probe. (Bottom row) Maps of the maximum normalized quantifiable
density range across varying probe kinetic constants, derived from quantification limits based
on typical and higher PAINT resolutions.
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S5 Additional information

S5.1 Experimental details for NN experimental validation dataset

S5.1.1 Materials and chemicals

Glass coverslips (22× 40 mm, thickness #1.5, Epredia) were obtained from VWR. Custom-

made flow cell stickers with an approximate internal volume of 20 µL were obtained from

Grace Biolabs (USA). Poly(l-lysine)-grafted poly(ethylene glycol) (PLL-g-PEG) with a graft-

ing ratio of 3.5 was purchased from SuSoS (Switzerland). The molecular weight of the PLL

backbone and PEG side chains are 20 and 2 kDa respectively. Azide functionalized PLL-g-

PEG (Nanosoft Biotechnology LLC, USA) is composed of a 15 kDa PLL backbone and 2

kDa PEG chain with a grafting ratio of 5. Fluorescent nanoparticles (0.2 µm, yellow-green,

Molecular Probes) were used as fiducial markers. PBS tablets, NaCl, and Mg2Cl were pur-

chased from Sigma-Aldrich, and Tween 20, EDTA, and Tris-HCl were purchased from Merck

Life Science. The ssDNA oligonucleotides (standard desalting and HPLC purification for

chemically modified DNA) were purchased from IDT (Integrated DNA Technologies). PBS

buffer was prepared by dissolving 1 tablet of PBS in 200 mL of MilliQ water. 1 M of NaCl

dissolved in PBS was used as the high-salt (HS) buffer in this study. The imaging buffer

(Buffer B) consists of 10 mM Mg2Cl, 5 mM Tris-HCL, 1 mM EDTA and 0.05% Tween 20.

Table S8 shows the ssDNA molecules that were used in this work. Sequence #1 is

pre-hybridized with Sequence #2, and conjugated to the low-fouling polymer to prepare

the ssDNA-functionalized surface. For the protein-functionalized surface, Sequence #3 is

first conjugated to the low-fouling polymer surface, followed by the hybridization of the

ssDNA-conjugated protein (Sequence #4). Sequence #5 is the ssDNA imager strand used

for DNA-PAINT experiment. Sequence #3 and #4 are kindly provided by collaborators and

the conjugation of ssDNA molecules to the protein is described in.S8
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Table S8: ssDNA sequences used in this work.

# 5’ end group Sequence 3’ end group
1 None CGATTCGAGAACGTGACTGCTTTTT DBCO
2 None GCAGTCACGTTCTCGAATCGAACATTATTACA None
3 DBCO GTGCGGCAGGGGTAAGACCA None
4 Protein TTTTTTTTGGTCTTACCCCTGCCGCAC None
5 ATTO647N TTGTAATAATG None

S5.1.2 Coverslip surface functionalization

The surface preparation procedure follows from.S2 Briefly, the coverslips were washed by 10

min of sonication in isopropanol and MilliQ baths respectively. After the sonication steps,

the coverslips were dried under nitrogen flow and placed under 1 min of oxygen plasma to ox-

idize the surface. A flow cell sticker was then attached to the coverslip and a polymer mixture

solution was immediately added to the flow cell and incubated for approximately 3 hours.

The polymer mixture solution consists of 1% v/v PLL-g-PEG-N3/PLL-g-PEG, for ssDNA-

functionalized surface, or 10% v/v PLL-g-PEG-N3/PLL-g-PEG, for protein-functionalized

surface, at a final combined concentration of 0.5 mg/mL in MilliQ. After the polymer incuba-

tion step, the solution in the flow cell was then aspirated to remove unbound or loosely bound

polymer molecules and replaced with solution containing 2 µM of partially double-stranded

DNA (for ssDNA-functionalized surface) or 2 µM of ssDNA linker (for protein-functionalized

surface) in HS buffer. The DNA-containing solution was incubated for 3 days. For the

protein-functionalized surface, the surface was flushed with 100 µL of HS buffer before re-

placing the buffer solution with 75 nM of protein-ssDNA conjugate molecules in HS buffer.

The solution was incubated for 10 min prior to PAINT imaging preparation.

S5.1.3 PAINT imaging and analysis

Fiducial markers were prepared by first sonicating the stock solution for 5 minutes to dis-

aggregate clusters of the particles. After sonication, the stock suspension was diluted 10000

times using PBS or HS buffer and the diluted suspension was subjected to 5 min sonication.
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Before flowing in the fiducial markers, the flow cells were flushed with 100µL of PBS or HS

buffer. Then, the buffer in the flow chamber was exchanged with the suspension of fiducial

markers, and the fiducial markers were allowed to sediment and attach to the substrate for

5 minutes. After this procedure, the unattached fiducial markers were flushed away with

100µL of Buffer B or HS buffer, and 25 pM of ssDNA probe solution (in Buffer B) or 1 nM

of Fab probe solution (in HS buffer) was added into the flow chamber. For the PAINT ex-

periment on the ssDNA-functionalized surface, combination of PBS and Buffer B was used.

On the other hand, only HS buffer was used during the PAINT imaging preparation for

the protein-functionalized surface. PAINT imaging was performed on Oxford Nanoimager

with a TIRF configuration. Fluorescence was recorded using a 100×, 1.4 NA oil immersion

objective, passed through a beam splitter to obtain a green and a red channel. Images were

acquired with an exposure time of 100 ms under 640 nm laser and 0.05 mW of 532 nm laser

illumination simultaneously for 1 hour. The laser power for the 640 nm laser was 12 mW and

31 mW for the ssDNA probe and Fab probe respectively. The raw images were then analyzed

with ThunderSTORM,S1 an open-source plug-in in ImageJ, to extract the localizations of

the fluorescence emissions. Analysis of the localizations obtained was described in.S2 Briefly,

the localizations were filtered based on their properties and split into 5 × 5 µm2 region of

interest ROI. Then, the spatio-temporal information of the localization data per ROI was

used to obtain the binding event density. The binding event density was used as inputs for

the BiSC-based analysis and NN-based analysis to estimate true surface molecular density.

The p-values provided in this work are obtained via Welch’s t-test statistic.
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S5.2 Sobol analysis results

Table S9 presents the results of the Sobol sensitivity analysis. For each input and output

parameter pair, the first-order index (Si), total-order index (St), and the interaction contri-

bution (St−Si) are reported. The low values of interaction contributions (i.e., St−Si < 0.1)

indicate minimal interaction effects between input parameters, suggesting that the variability

in PAINT outputs is predominantly driven by the individual input parameters themselves.

Table S9: Sobol sensitivity analysis results for PAINT output metrics. First-order indices
(Si), total-order indices (St), and interaction contributions (St − Si) are shown for each
input parameter. The values quantify the relative influence of individual parameters and
their interactions on the variability of PAINT outputs.

Input parameter Si St St − Si

Output parameter: σPSF

kon 0.361 0.367 0.005
σmol 0.136 0.136 0.001
koff 0.272 0.278 0.006
cimg 0.221 0.225 0.004
t 0.001 0.005 0.003
Output parameter: σcloud

kon 0.482 0.493 0.011
σmol 0.204 0.205 0.001
koff 0.002 0.003 0.001
cimg 0.271 0.282 0.010
t 0.030 0.032 0.002
Output parameter: σevent

kon 0.492 0.499 0.007
σmol 0.185 0.185 0
koff 0 0.004 0.004
cimg 0.283 0.289 0.006
t 0.032 0.033 0.001
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