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S1 Simulation procedure

S1.1 Point spread function (PSF) density

To investigate the effect of point spread function (PSF) density opsp on PSF detection
accuracy, the ThunderSTORM simulation engine was used to generate PSFs over 100 frames
for a given density.5! The input parameters used in the simulations are listed in Table S1.
The generated PSFs serve as ground truth positions. Simulated raw data were analyzed
using ThunderSTORM to localize PSFs in each frame. The resulting localizations were then
compared to the ground truth and evaluated in terms of true positives (TP), false positives

(FP), and false negatives (FN), using the following metrics:

TP TP 2pr

= —— _— F:
TP + FN P=Tp P ST

(S1)

r

Here, recall r quantifies the fraction of ground truth PSFs correctly detected, while preci-
sion p reflects the proportion of correct detections among all localized PSFs. The F; score
combines both into a single performance metric, where values near 0 indicate poor detection
performance and values close to 1 indicate high accuracy. In this study, the F; score is used

as a measure of PSF detection accuracy.

Table S1: Input values for ThunderSTORM simulation engine.

Field of view width (pm) 30
Field of view height (pm) 30
Frames 100
PSF width (nm) 100 to 200
PSF intensity (photon) || 400 to 20000
Mean photon background (photon) 30

PSF density opsp (pm~2) 0.01 to 2.5
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S1.2 Localization cloud density and spatial distribution

To investigate the effect of localization cloud density o.ouq on cloud identification accuracy
and to examine the factors influencing quantified spatial distribution, spatial point patterns
were simulated with a given molecular density o, and a predefined spatial distribution,
characterized by an average nearest-neighbor distance D'. A subset of molecular positions
was randomly selected according to a specified molecular sampling ratio s,, and localizations
were generated around these sampled positions using a Gaussian distribution with a standard
deviation of 8 nm, reflecting experimentally measured localization uncertainty.? The number
of localizations generated are sampled from an exponential distribution with a characteristic
bound state lifetime of 1 s, corresponding to a molecular dissociation rate kg of 1 s™!. For
evaluating localization cloud identification accuracy, full sampling (s, = 1) was assumed.
Ground-truth labels were assigned to each simulated localization. Mean-shift clustering
with a bandwidth of 30 nm was applied to identify localization clouds. The adjusted Rand
index was used to compare the clustering results with ground-truth labels, and is referred
to as the localization cloud identification accuracy.®® The input values for generating the
simulated data is summarized in Table S2.

To assess spatial distribution for both true and estimated molecular positions, a nearest-
neighbor distance-based statistical test—the Clark—Evans test—was applied to evaluate de-
viations from complete spatial randomness (CSR).5* The test compares the observed average
nearest-neighbor distance D' to the expected value i under CSR and determines whether
the pattern is significantly clustered or dispersed. To mitigate edge effects, nearest-neighbor
distances from points within the outer 10% boundary of the region of interest were excluded
from the statistics. To satisfy the independence assumption of D!, N subsets of size m were

randomly sampled from the nearest-neighbor distance set to compute mean values:

1 N
dn' =—> D} for D} c D' (S2)
m

i=1
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With this, the standardized mean nearest neighbor distance z,,, also denoted as the distri-

bution score, can be computed via

IR A Sy 1 i—r
Zm__z & “_Qﬁ —V omdrn (53)

Q>

where A\ denotes the point density, ji the expected mean nearest-neighbor distance, ¢ the
standard deviation of the expected mean nearest-neighbor distance. The distribution score
is tested against the distribution score of a CSR point pattern at a 5% significance level

20.05 — 165, glVlIlg

Zm < —Zoo0s5 - Significant clustering (s4)

Zm > Zoos - Significant dispersion

Table S2: Input values to generate simulated data. *Note that, when studying localization
cloud identification accuracy, s, is set to 1.

‘ H Values ‘
True molecular density oy, (um~=2) || 0.1 to 500
True distribution score -18 to 18
Molecular sampling ratio s, 0.1 to 1*
Average localization uncertainty (nm) 8
Analysis search region (nm) 30
o (Sil) 1

S1.3 Binding event density

In previous work, a simulation-based method known as Biomolecule Sampling Compensation
(BiSC) analysis was developed to estimate surface molecular density from experimentally ob-
served binding event density.5? BiSC compensates for the effect of biomolecule undersampling
in molecular quantification by simulating binding dynamics using Monte Carlo methods.

In this approach, signal time traces for each biomolecule within a region of interest of

area. A and acquisition duration ¢ are simulated. Each time trace consists of alternating
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bound and unbound states, with lifetimes governed by the molecular association rate kg,
dissociation rate kog, and probe concentration cjn,. The characteristic lifetimes are defined

as:

1 1
Tub = 3 — (S5)

on * Cimg

Tb =

T
S
=

where 7, and 7, denote the characteristic bound and unbound state lifetime respectively.
Bound and unbound durations are sampled from exponential distributions with the corre-

sponding lifetimes. The probability of a molecule being in the bound state is given by:

P(bOllIld) = ﬁ with Kd = off (86)

|

where cpinger 18 the effective volumetric biomolecule concentration and Ky is the equilibrium
dissociation constant. The binding probability, P(bound), depends on both the probe con-
centration and hybridization kinetics (see Table S3). Time traces are generated with a 100
ms integration time. The total number of binding events observed per trace is summed and
normalized by the area A to compute the binding event density oevent. By varying o, a
linear relationship between o, and oeent is established. Each simulation is repeated 20

times per o, value, with parameter details summarized in Table S4.

Table S3: Dependence of the binding probability on imager strand concentration and hy-
bridization kinetics.

’ Cpinder Kd H P(bOqu) ‘
< Cimg <K Cimg 1
K Cimg > Cimg Cimg/Kd
> Cimg < Chinder || Cimg/Cbinder
> Cimg >> Chinder Cimg/Kd

To assess the accuracy of the estimated molecular density o0, a bootstrapping proce-
dure is applied: simulated datasets are resampled with replacement, and linear regression is

performed on each resampled set. Each model is then used to predict 7, for a fixed Tevent,
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Table S4: Input parameters for BiSC analysis.

’ H Value ‘

kot (s71) 0.1, 1, 10

Kon (M=t s71) || 5 x 10* to 107
Cimg (M) 2.5 x 1071

t (min) 30, 60, 90

Integration time (s) 0.1

Tmol (pm=2) 10 to 2000

repeated 1000 times. Relative residuals are computed as:
rry = 2ol i Tmol g e [1,1000] (S7)

Omol

where 77; denotes the relative residual and ., is the mean of the estimated densities. The
standard deviation of the relative residuals is taken as the measure of counting accuracy. In
Figure 2(C)(ii), varying combination of probe kinetic constants and imaging parameters are

min
event

used to derive the relationship between o,,, and the minimum binding event density o
required for molecular quantification accuracy of at least 90%. Table S5 summarizes the
conditions used.

Table S5: Combinations of probe kinetic constants and acquisition duration used in Figure

2(C)(ii).

| 0ol (pm™?) o (pm™?) [ kow M7 s kg (s!) ¢ (min) |

15.23 13.17 107 1 60
16.60 7.83 5 x 108 1 60
28.64 2.97 106 0.1 60
30.42 4.00 106 1 60
31.53 1.68 106 1 90
32.33 2.92 108 10 60
42.25 1.85 108 1 30
45.61 2.03 5 x 10° 1 60
59.83 0.89 2 x 10° 1 60
86.31 0.71 10° 1 60
92.06 0.58 7 x 10* 1 60
93.34 0.29 5 x 10* 1 60

S-7



S1.4 Neural network surrogate model

To reduce computational cost, a neural network (NN) surrogate model was trained using
data generated from the Monte Carlo simulations described in the previous section.%® The
simulation outputs include point spread function density opgr, localization cloud density
Ocloud, and binding event density oevent- A total of 3500 datasets, corresponding to different
combinations of input parameters (see Table S6), were used to train the NN model. The
neural network architecture consists of two hidden layers with 200 and 100 neurons, respec-
tively. The rectified linear unit (ReLU) was used as the activation function in the hidden

layers. 5% No explicit regularization was applied during training.

Table S6: The input parameters used to generate PAINT outputs via the Monte Carlo simu-
lations were sampled uniformly within defined ranges [min,max| for N values per parameter.
The PAINT simulated data is used to train the NN model.

’ H Min Max # Samples‘

kon (M~1s™h) 10° 107 5
kg (s71) 1074 10° 5
Cimg (M) 10712 107 4
t (min) 10 110 5
Omol  (pm™2) 0.1 2700 7
w» 0.08 % 1.0 -
3 n
T 0.06 s f
S 3 0.5 -
% 0.04 A §
E’ 0.02 1 L o
s ‘3‘5 0.0 1
= 0.00 - g
0 50 100 150 0 50 100 150
# epochs/iterations # epochs/iterations

Figure S1: The training loss (left), defined as mean squared error, decreases consistently with
increasing epochs, indicating effective model fitting. The validation score (right), measured
by the coefficient of determination (R?), remains high throughout and plateaus at later
stages, confirming that the neural network was successfully trained without overfitting.

Figure S1 shows the training progression, where the loss, defined as the mean squared
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error, decreases over epochs. Validation performance was tracked using the coefficient of

determination R?, defined as:
R2=—1— M (S8)
B > (v —7)?

As training progresses, R? improves and eventually plateaus. In cases of overfitting, the

validation score may decline during later stages of training.

S2 Factors affecting localization cloud quantification limit

The results presented in this article (Figure 2(B)) for determining the localization cloud
identification limit are based on experimentally measured localization uncertainty, molecular
dissociation rate, and the search region used in mean-shift clustering. Here, the influence of

these parameters on the quantification limit—specifically the maximum localization cloud

max

max  identifiable with at least 90% accuracy—is systematically evaluated.

density o

As shown in Figure S2, the molecular dissociation rate kg, which influences the average

max

oy In contrast,

number of localizations per localization cloud, has negligible impact on o
reducing localization uncertainty (i.e., decreasing the standard deviation of the Gaussian

distribution from which localization coordinates are sampled) increases o2%,. This indi-

cates that, for a given spatial distribution, a greater number of localization clouds can be
reliably identified when localizations are determined with higher precision. This result is
expected, as better localization precision reduces the spatial overlap between nearby local-

ization clouds. However, the benefit of improved localization precision is less pronounced in

max

nax increases only

clustered molecular distributions. Even with high localization accuracy, o

marginally under strong clustering, suggesting that spatial overlap remains a limiting factor

S2

in such systems. As previously shown in,>* an optimal search region exists for mean-shift

clustering. Varying the search region for data generated with 8 nm localization uncertainty

max

confirms this: o2,

initially increases with search region size but decreases beyond an opti-

mal point, due to merging of distinct localization clouds.
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In experimental settings, the search region is often selected empirically through visual
inspection of clustering results. Alternatively, it can be guided by the observed localization

uncertainty, with a typical rule of thumb being twice the maximum measured uncertainty.

Koff (s71) Localization uncertainty (hm) Search region (nm)
Increasing Increasing ®
400 - 4 localization i search area
uncertainty ® (@
xS o ]
£
S 200 - ° . . ] o o .
O $ © o o
01® ® | | 10 8 ® o o) {0 o ’ |
-20 0 20 =20 0 20 =20 0 20

True distribution score True distribution score True distribution score

Figure S2: Effects of molecular dissociation rate kg, localization uncertainty and mean-shift
clustering search region on the localization cloud identification limit.

S3 Areas of interpretability in quantified distribution scores

In Figure 3, regions of interpretability are identified—combinations of true surface molecular
density o0 and molecular sampling ratio s, for which quantified spatial distributions can
be confidently interpreted. These regions vary with the underlying true spatial distribution.
Figures S3 and S4 illustrate how the size and shape of these interpretability regions evolve
across different spatial distributions. Notably, clustered systems exhibit substantially smaller
interpretability areas compared to random and dispersed systems. As the true distribution
approaches complete spatial randomness (i.e., distribution score near zero), the area of in-
terpretability narrows, indicating that fewer combinations of o, and s, yield statistically
interpretable distribution scores.

The significantly smaller interpretability regions observed for clustered systems, compared
to random and dispersed systems, highlight a key limitation of PAINT in quantifying spatial

distributions under clustered molecular arrangements. While this may not always be a
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critical drawback, particularly when alternative molecular targets such as linker molecules
provide more interpretable spatial information, the challenge becomes more pronounced
when a high-density, clustered system is the object of interest. In such cases, expanding the
interpretability region is essential for reliable distribution quantification.

One approach to achieve this is by increasing the spatial resolution of PAINT, for instance
through the use of RESI (Resolution Enhancement by Sequential Imaging).5” The impact of
enhanced PAINT resolution is shown in Figure S5. Here, localization coordinates are sampled
from a Gaussian distribution with a standard deviation of 0.8 nm, tenfold lower than the 8
nm uncertainty used throughout this study. To ensure consistency, the mean-shift clustering
search region is also reduced proportionally to 3 nm.

As shown in Figure S5, the area of interpretable quantified distribution scores expands
considerably for a system with comparable clustering (true distribution score = -18.63), al-
lowing a wider range of o, and s, combinations to yield statistically interpretable results.
However, it is important to note that experimental methods enabling such high resolution of-
ten suffer from poor scalability with molecular density and may require prolonged acquisition
times (ranging from hours to days) to collect sufficient statistics for robust quantification.
This underscores the fundamental trade-off between imaging parameters and surface molec-

ular complexity in achieving high-throughput and precise quantification in PAINT.
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Figure S3: Contour map of observed distribution score as a function of true molecular density
Omol, Molecular sampling ratio s,, and true spatial distribution. The black line indicates the
maximum allowable sampling ratio, defined by the localization cloud identification limit.
Red dotted lines mark the distribution score thresholds corresponding to the 5% significance
level, distinguishing significantly clustered or dispersed distributions from complete spatial
randomness. Distribution score less than -zg 5 (-1.65) indicates clustering, while distribution
score more than zg o5 indicates dispersity.
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Molecular sampling ratio

Figure S4: Area of interpretable quantified distribution scores as a function of true molecular
density o, and molecular sampling ratio s;, across varying true spatial distributions. The
shaded regions indicate combinations of 0., and s, for which the observed distribution
score can be confidently interpreted, based on statistical significance and localization cloud
identification accuracy. Distribution score less than -z g5 (-1.65) indicates clustering, while
distribution score more than zg g5 indicates dispersity. Note: the x-axis scales differ between

plots.
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Figure S5: Contour maps of observed distribution scores and corresponding interpretability
regions as functions of true molecular density o, and molecular sampling ratio s, for a
clustered system (true distribution score = -18.63). For the typical PAINT resolution case,
synthetic localizations are generated with a localization precision of 8 nm and identified using
a mean-shift clustering search region of 30 nm. For the high-resolution case, localizations are
generated with a precision of 0.8 nm and identified using a 3 nm search region. Shaded regions
indicate combinations of o,, and s, where the observed distribution score is statistically
interpretable.
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S4 Probe scores

S4.1 Range of molecular density quantifiable with at least 90% ac-

curacy per probe

(A) Only quantifying molecular density

Minimum quantifiable Maximum quantifiable Normalized quantifiable
o (o} Omol Fange
0] mol o mol o mol
= = , -3000 § - 1.00
S -100 S 3
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o o 2000 ©
5 5 5
2 50 =2 2
£ = 1000 &
° ° °
S S S
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Figure S6: Maps of minimum and maximum quantifiable molecular density o.,,, and the
corresponding normalized quantifiable density range, for different combinations of true spa-
tial distribution and probe concentration c¢in,. (A) Quantification based on density accuracy
limits only. (B) Quantification based on both density accuracy limits and interpretability of
distribution scores.

Figure S6 shows the range of molecular densities o, that can be quantified with at least
90% accuracy and interpretable distribution scores for a DNA probe with reference kinetics
of kop = 105 M~ s and kog = 1 s™!. For each probe concentration ciymg and true spatial

distribution, the minimum and maximum quantifiable o,,,; values are determined based on
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the quantification limits and interpretability criteria established in Figures 2 and 3. The
resulting density range is then normalized by the total simulated o, range to produce a
map of the normalized quantifiable density range. This map is used throughout the study to
evaluate the impact of quantification constraints and probe kinetics, and serves as the basis

for calculating probe scores.

S4.2 Calculation of probe scores

A probe score is assigned to each probe based on its kinetic constants and is derived from the
map of quantifiable density range. When considering only the density quantification limit,
the normalized quantifiable density range is first averaged across all true spatial distributions
for each probe concentration c¢img. The probe score is then defined as the maximum of these
mean values. When both density and spatial distribution quantification are considered,
the map is divided into three spatial regimes, namely clustered, random, and dispersed,
highlighted in red in Figure S7. For each regime, the mean normalized quantifiable density
range is calculated across cimg, and the maximum value is taken as the probe score.

This definition reflects the objective of identifying probes that support reliable quantifica-
tion over a broad range of true molecular densities o,,,1 and spatial distributions, regardless
of the probe concentration used. A high probe score therefore indicates strong and versatile

quantification performance across varying experimental and molecular conditions.
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Figure S7: Maps of normalized quantifiable density range (top row) and corresponding mean
normalized quantifiable density range across varying probe concentrations (bottom row).
Probe scores are defined as the maximum of the mean values. (A) Quantification based on
density accuracy limits only. (B) Quantification based on both density accuracy limits and
interpretability of distribution scores.
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S4.3 Effect of quantification limit and probe kinetics

In this work, four quantification limits or criteria are proposed to ensure molecular quantifi-
cation with at least 90% accuracy, as summarized in Table S7. These limits impact the map
of normalized quantifiable density range differently depending on the probe kinetic constants.
Figure S8 illustrates how these limits sequentially affect the quantifiable density range for
four representative sets of probe kinetics.

The opép limit constrains the range of probe concentrations cimg that support high-
accuracy quantification, particularly for probes with low k.g or high k,,. For example, a

probe with k., = 10* M~! s7! and k.g = 1 s~! enables a broad quantifiable density range

max

max, limit has only a minor effect on the density map

across a wide Cimg interval. While the o

min
event

within the simulated ranges of ¢ing and acquisition time, the o, limit, which accounts for
the statistical requirement to overcome molecular undersampling, can substantially affect
the quantifiable range depending on probe kinetics. Probes with lower k,, fail to generate
sufficient event statistics at low ¢ing, leading to regions with no quantifiable density (indicated
by black squares). One particularly interesting case is the probe with ko, = 10¢ M~! s~!
and kog = 0.1 s~'. Although a high ¢me would typically support precise quantification,
this probe is strongly limited by the opdy constraint. Furthermore, very low densities at this
probe concentration do not yield sufficient event statistics, meaning that no quantifiable o,
exists within this regime.

When the interpretability of spatial distribution is also considered, the quantifiable den-

sity map is further constrained by the required sampling ratio s; = 0cioud/mol. The map is

divided into three spatial regimes: clustered, random, and dispersed. For the random case,

max

nax, constraint, and thus does not signifi-

the interpretability area aligns closely with the o
cantly alter the trend. For dispersed systems, one might expect only minor impact due to
the broad interpretability region. However, in the four kinetic examples shown, certain re-

gions remain non-quantifiable because the minimum required s, is not met. In this case, the

sampling ratio is dictated by the statistical threshold necessary to classify the distribution as
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dispersed (i.e., distribution score > zg¢5). For clustered systems, quantifiable densities are
restricted to very low values due to the inherently narrow interpretability region. Notably,
the probe concentration range that allows precise quantification also varies significantly with
probe kinetics.

Figures S9 and S10 further illustrate how probe kinetics influence the map of quantifiable
density range under two scenarios: considering only density accuracy limits, and consider-
ing both density and distribution interpretability. Although the nine probes shown in these
figures have similar overall probe scores, the ¢, regimes over which high-accuracy quan-
tification is achievable differ markedly. In some cases, the effective concentration window
becomes narrower, broader, or shifts depending on kinetic parameters. This emphasizes
the importance of tailoring imaging parameters to the specific kinetic characteristics of the

PAINT probe in use.

Table S7: Summary of quantification limit defined in this work.

Quantification Notes
limit
1 opdp limit Avoid PSF overlap
2 ogax, limit Avoid localization cloud overlap
3 omin Jimit Ensure sufficient statistics
4 Area of interpretability Accurate estimates of molecular position
and statistical thresholding
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Figure S8: Evolution of the map of quantifiable density range as quantification limits are
applied sequentially. Four representative probe kinetics are shown to illustrate how each
limit, namely oB&X, omax = ogmin = and the area of interpretability, progressively constrains

the range of molecular densities o, that can be quantified with at least 90% accuracy.
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Figure S10: Effect of probe kinetics on the map of quantifiable density range when density
accuracy and distribution interpretability is considered. The figure illustrates how different
combinations of probe association and dissociation rates influence the range of molecular
densities oy, that can be quantified with at least 90% accuracy. Each subplot is titled with
the corresponding probe score, reported for clustered, random, and dispersed distributions.
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S4.4 Effect of PAINT resolution

As shown in Figure S5, the area of interpretability expands significantly when higher PAINT
resolution is employed, as in the case of RESI. This expansion directly increases the nor-
malized quantifiable density range achievable for a given probe. Figure S11 illustrates the
effect of enhanced PAINT resolution across different probe kinetics, exemplified for a true
spatial distribution score of —18. Notably, higher resolution leads to a substantial increase
in quantifiable density range, up to approximately 60-fold for probes with high dissociation
rates (ko) across the simulated ¢, range. Even for probes with lower k.q values, the gain
remains significant, with an increase of roughly 20-fold. In the Figure, the maximum nor-
malized quantifiable density range is computed for each probe across the tested cime range.
The results show a modest expansion in the range of kinetic parameters that support high-
accuracy quantification under clustered conditions. In particular, probes with higher k.g
benefit more from increased resolution, enabling slightly broader quantification capability.
These findings reinforce that higher PAINT resolution can alleviate some of the limitations

associated with quantifying high-density, clustered molecular distributions.
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Figure S11: Effect of PAINT resolution on the quantifiable density range for clustered sys-
tems (true distribution score = -18). (Top row) Normalized quantifiable density ranges are
shown for four example probe kinetic constants, comparing typical PAINT resolution and
higher-resolution conditions. Black triangles indicate the maximum normalized quantifiable
density range for each probe. (Bottom row) Maps of the maximum normalized quantifiable
density range across varying probe kinetic constants, derived from quantification limits based

on typical and higher PAINT resolutions.
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S5 Additional information

S5.1 Experimental details for NN experimental validation dataset
S5.1.1 Materials and chemicals

Glass coverslips (22 x 40 mm, thickness #1.5, Epredia) were obtained from VWR. Custom-
made flow cell stickers with an approximate internal volume of 20 ul. were obtained from
Grace Biolabs (USA). Poly(l-lysine)-grafted poly(ethylene glycol) (PLL-g-PEG) with a graft-
ing ratio of 3.5 was purchased from SuSoS (Switzerland). The molecular weight of the PLL
backbone and PEG side chains are 20 and 2 kDa respectively. Azide functionalized PLL-g-
PEG (Nanosoft Biotechnology LLC, USA) is composed of a 15 kDa PLL backbone and 2
kDa PEG chain with a grafting ratio of 5. Fluorescent nanoparticles (0.2 pym, yellow-green,
Molecular Probes) were used as fiducial markers. PBS tablets, NaCl, and MgyCl were pur-
chased from Sigma-Aldrich, and Tween 20, EDTA, and Tris-HCI] were purchased from Merck
Life Science. The ssDNA oligonucleotides (standard desalting and HPLC purification for
chemically modified DNA) were purchased from IDT (Integrated DNA Technologies). PBS
buffer was prepared by dissolving 1 tablet of PBS in 200 mL of MilliQQ water. 1 M of NaCl
dissolved in PBS was used as the high-salt (HS) buffer in this study. The imaging buffer
(Buffer B) consists of 10 mM Mg,Cl, 5 mM Tris-HCL, 1 mM EDTA and 0.05% Tween 20.
Table S8 shows the ssDNA molecules that were used in this work. Sequence #1 is
pre-hybridized with Sequence #2, and conjugated to the low-fouling polymer to prepare
the ssDNA-functionalized surface. For the protein-functionalized surface, Sequence #3 is
first conjugated to the low-fouling polymer surface, followed by the hybridization of the
ssDNA-conjugated protein (Sequence #4). Sequence #5 is the ssDNA imager strand used
for DNA-PAINT experiment. Sequence #3 and #4 are kindly provided by collaborators and

the conjugation of ssDNA molecules to the protein is described in.%®
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Table S8: ssDNA sequences used in this work.

’ # \ 5" end group \ Sequence \ 3" end group ‘
1 None CGATTCGAGAACGTGACTGCTTTTT DBCO
2 None GCAGTCACGTTCTCGAATCGAACATTATTACA None
3 DBCO GTGCGGCAGGGGTAAGACCA None
4 Protein TTTTTTTTGGTCTTACCCCTGCCGCAC None
5 | ATTOG647N | TTGTAATAATG None

S5.1.2 Coverslip surface functionalization

The surface preparation procedure follows from.? Briefly, the coverslips were washed by 10
min of sonication in isopropanol and MilliQQ baths respectively. After the sonication steps,
the coverslips were dried under nitrogen flow and placed under 1 min of oxygen plasma to ox-
idize the surface. A flow cell sticker was then attached to the coverslip and a polymer mixture
solution was immediately added to the flow cell and incubated for approximately 3 hours.
The polymer mixture solution consists of 1% v/v PLL-g-PEG-N3/PLL-g-PEG, for ssDNA-
functionalized surface, or 10% v/v PLL-g-PEG-N3/PLL-g-PEG, for protein-functionalized
surface, at a final combined concentration of 0.5 mg/mL in MilliQQ. After the polymer incuba-
tion step, the solution in the flow cell was then aspirated to remove unbound or loosely bound
polymer molecules and replaced with solution containing 2 pM of partially double-stranded
DNA (for ssDNA-functionalized surface) or 2 uM of ssDNA linker (for protein-functionalized
surface) in HS buffer. The DNA-containing solution was incubated for 3 days. For the
protein-functionalized surface, the surface was flushed with 100 pL of HS buffer before re-
placing the buffer solution with 75 nM of protein-ssDNA conjugate molecules in HS buffer.

The solution was incubated for 10 min prior to PAINT imaging preparation.

S5.1.3 PAINT imaging and analysis

Fiducial markers were prepared by first sonicating the stock solution for 5 minutes to dis-
aggregate clusters of the particles. After sonication, the stock suspension was diluted 10000

times using PBS or HS buffer and the diluted suspension was subjected to 5 min sonication.
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Before flowing in the fiducial markers, the flow cells were flushed with 100uL of PBS or HS
buffer. Then, the buffer in the flow chamber was exchanged with the suspension of fiducial
markers, and the fiducial markers were allowed to sediment and attach to the substrate for
5 minutes. After this procedure, the unattached fiducial markers were flushed away with
100pL of Buffer B or HS buffer, and 25 pM of ssDNA probe solution (in Buffer B) or 1 nM
of Fab probe solution (in HS buffer) was added into the flow chamber. For the PAINT ex-
periment on the ssDNA-functionalized surface, combination of PBS and Buffer B was used.
On the other hand, only HS buffer was used during the PAINT imaging preparation for
the protein-functionalized surface. PAINT imaging was performed on Oxford Nanoimager
with a TIRF configuration. Fluorescence was recorded using a 100x, 1.4 NA oil immersion
objective, passed through a beam splitter to obtain a green and a red channel. Images were
acquired with an exposure time of 100 ms under 640 nm laser and 0.05 mW of 532 nm laser
illumination simultaneously for 1 hour. The laser power for the 640 nm laser was 12 mW and
31 mW for the ssDNA probe and Fab probe respectively. The raw images were then analyzed
with ThunderSTORM,®! an open-source plug-in in ImageJ, to extract the localizations of
the fluorescence emissions. Analysis of the localizations obtained was described in.5? Briefly,
the localizations were filtered based on their properties and split into 5 x 5 um? region of
interest ROI. Then, the spatio-temporal information of the localization data per ROI was
used to obtain the binding event density. The binding event density was used as inputs for
the BiSC-based analysis and NN-based analysis to estimate true surface molecular density.

The p-values provided in this work are obtained via Welch’s t-test statistic.
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S5.2 Sobol analysis results

Table S9 presents the results of the Sobol sensitivity analysis. For each input and output
parameter pair, the first-order index (5;), total-order index (.S;), and the interaction contri-
bution (S; — S;) are reported. The low values of interaction contributions (i.e., Sy —S; < 0.1)
indicate minimal interaction effects between input parameters, suggesting that the variability

in PAINT outputs is predominantly driven by the individual input parameters themselves.

Table S9: Sobol sensitivity analysis results for PAINT output metrics. First-order indices
(S;), total-order indices (S;), and interaction contributions (S; — S;) are shown for each
input parameter. The values quantify the relative influence of individual parameters and
their interactions on the variability of PAINT outputs.

Input parameter || S; | S, | S —5; |

Output parameter: opgp

Kon 0.361 | 0.367 | 0.005
Omol 0.136 | 0.136 | 0.001
kog 0.272 | 0.278 | 0.006
Cimg 0.221 | 0.225 | 0.004
t 0.001 | 0.005 | 0.003
Output parameter: o¢ouq

Kon 0.482 | 0.493 | 0.011
Omol 0.204 | 0.205 | 0.001
ko 0.002 | 0.003 | 0.001
Cimg 0.271 | 0.282 | 0.010
t 0.030 | 0.032 | 0.002
Output parameter: oeyent

Kon 0.492 | 0.499 | 0.007
Omol 0.185 | 0.185 0
ko 0 0.004 | 0.004
Cimg 0.283 | 0.289 | 0.006
t 0.032 | 0.033 | 0.001
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