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I. STRUCTURAL AND ELECTRONIC PROPERTIES

TABLE I. Calculated structural properties: the lattice constant a, the bond lengths (aromatic,

single, and triple), and the 2D mechanical moduli (Y2D, B2D, and µ2D).

a [Å] sp2-sp2 [Å] sp2-sp [Å] sp-sp [Å] Y2D [N/m] B2D [N/m] µ2D [N/m]

Graphene DFTB-mio-1-1 2.47 1.42 - - 375 250 150

DFT-PBE 2.47 1.43 - - 328 217 132

DFT-PBE (Ref.) - - - - - - -

GY DFTB-mio-1-1 6.92 1.41 1.43 1.22 174 176 58

DFT-PBE 6.89 1.43 1.41 1.22 168 141 60

DFT-PBE (Ref. [1]) 6.89 1.43 1.41 1.22 166 - -

GDY DFTB-mio-1-1 9.53 1.42 1.43 1.23 141 117 50

DFT-PBE 9.46 1.43 1.40 1.23 116 99 41

DFT-PBE (Ref. [2]) 9.48 - - - - - -

TABLE II. Calculated electronic properties: band gap (Egap) and effective masses (m∗
e, m

∗
h) along

M − Γ and M −K.

M − Γ M −K

Egap [eV] m∗
e, m

∗
h [m0] m∗

e, m
∗
h [m0]

GY DFTB-mio-1-1 1.38 0.30, -0.32 0.24, -0.26

DFT-PBE 0.46 0.20, -0.22 0.08, -0.09

DFT-PBE (Ref. [1]) 0.46 0.20, -0.22 0.08, -0.09

GDY DFTB-mio-1-1 1.52 0.28, -0.32 0.28, -0.32

0.18, -0.20 0.19, -0.21

DFT-PBE 0.48 0.09, -0.09 0.09, -0.09

0.07, -0.07 0.07, -0.07

DFT-PBE (Ref. [2]) 0.46 - -
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II. PARAMETRIZATION TEST

Calculations were performed using the open source DFTB+ code [3]. In order to better

gauge the effect of the parametrization of the Hamiltonian matrix elements on our results,

we used different Slater–Koster sets: 3ob-3-1 [4] 3ob:freq [5] mio-1-1 [6] ob2-1-1 [7] and

matsci-0-3 [8]. We performed a geometry optimization using the SCC method [6].

DFT- PBE 

E
g 
= 0.46 eV

FIG. 1. Calculated electronic band structures with different Slater-Koster parametrizations.
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FIG. 2. Calculated phonon band structures with different Slater-Koster parametrizations.
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III. KANE-BAND MODEL

For a 2D Kane-band, the electronic dispersion is described by:

ε+ αε2 =
ℏ2k2

2m∗ , (1)

where α is the non-parabolicity parameter, ℏ is the reduced Planck constant and m∗ is the

effective mass of the charge carriers. Here, k2 is the squared wave vector in 2D, k2
x + k2

y.

After rearranging and solving for ε, it can be explicitly written as a function of k

ε =

(
ℏ2k2

2mα
+

1

4α2

) 1
2

− 1

2α
. (2)

a. Carrier Velocity Group velocity of the charge carriers along a certain direction, for

instance, in x-direction, is defined as the rate of change of the energy ε with respect to the

wave vector k, scaled by the ℏ.

vx =
1

ℏ
∂ε(k)

∂kx
(3)

=
1

2ℏ

[
ℏ2k2

2mα
+

1

4α2

]− 1
2 2kxℏ2

2mα
(4)

=
ℏkx
2mα

[
ℏ2k2

2mα
+

1

4α2

]− 1
2

(5)

Now, we rearrange the Eq.2 (
ℏ2k2

2mα
+

1

4α2

) 1
2

=
2αε+ 1

2α
(6)

and use this in the Eq.5 in order to define velocities in terms of α and energy ε:

vx =
ℏkx
2mα

(
2α

2αε+ 1

)
=

ℏkx
m

(
1

2αε+ 1

)
(7)

b. Charge Carrier Density The charge carrier density nC in 2D at a specific tempera-

ture T and chemical potential µ is given by

nC =
1

Auc

∑
n

∫
d2k

ΩBZ

[
f 0(εn;µ, T )− f 0(εn; εF , 0)

]
, (8)
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where Auc is the unit cell area and ΩBZ is the Brillouin Zone area, ΩBZ = 4π2/Auc. f
0(ε;µ, T )

is the Fermi distribution function. For the differential area element d2k in polar coordinates,

we used 2πkdk accounting for the integration over the angular component:

nC =
1

4π2

∑
n

∫
2πkdk

[
f 0(εn;µ, T )− f 0(εn; εF , 0)

]
. (9)

where the summation over n accounts for contributions from the bands. The carrier densities

for electrons nC = ne and holes nC = nh are obtained by summing over the conduction and

valence bands, respectively. Then we have

nC =
1

4π2

∫
2πkdk

[
f 0(ε;µ, T )− f 0(ε; εF , 0)

]
. (10)

By using the Eq.1, we can use an expression for k

k =

√
2m

ℏ
√
ε(1 + αε), (11)

and differentiate it with respect to ε in order to convert the integral from momentum space

to energy space.

dk =

√
2m

ℏ

[
1

2
(ε+ αε2)−

1
2 (1 + 2αε)

]
dε (12)

=

√
2m

2ℏ
(1 + 2αε)√
(ε+ αε2)

dε (13)

Next, we substitute the expressions for k and dk in to Eq.10 to rewrite the integral for

carrier densities

nC =
1

2π

∫
1 + 2αε

2α

2mα

ℏ2
dε

[
f 0(ε;µ, T )− f 0(ε; εF , 0)

]
(14)

=
m

2πℏ2

∫
dε(1 + 2αε)

[
f 0(ε;µ, T )− f 0(ε; εF , 0)

]
. (15)

c. Electrical Conductivity Within the Boltzmann transport framework [9], conductiv-

ity tensor in 2D is defined as

σxy =
e2

Auc

∑
n

∫
d2k

ΩBZ

[
−∂f 0(εn;µ, T )

∂ε

]
vxnvynτn, (16)
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where energies εn, velocities vn and relaxation times τn are as a function of k. After summing

over the bands, conductivity tensor σxy can be written as

σxy =
e2

Auc

∫
d2k

ΩBZ

[
−∂f 0(ε;µ, T )

∂ε

]
vxvyτ. (17)

After inserting ΩBZ = 4π2/Auc, d
2k = 2πkdk and the velocities as in Eq. 7, we get

σxy =
e2

2π

∑
x,y

∫
kdk

[
−∂f 0(ε;µ, T )

∂ε

]
ℏkx

m(1 + 2αε)

ℏky
m(1 + 2αε)

τ. (18)

The two-dimensional conductivity σ2D is obtained by averaging the trace of the conduc-

tivity tensor

σ2D =
1

2
tr(σ) =

1

2

2∑
i=1

σii. (19)

Since we are only taking the trace, we have → (k2
x + k2

y)/2 = k2/2. We can re-write σ2D

as

σ2D =
e2

2π

∫
kdk

[
−∂f 0(ε;µ, T )

∂ε

]
ℏ2

m2(1 + 2αε)2
k2

2
τ. (20)

Then we change the variable k to ε using the following relations.

kdk =(1 + 2αε)
m

ℏ2
dε (21)

k2

2
=
m

ℏ2
ε(1 + αε) (22)

We substitute these relations in Eq. 20 and obtain

σ2D =
e2

2π

∫
(1 + 2αε)

m

ℏ2
dε

[
−∂f 0(ε;µ, T )

∂ε

]
ℏ2

m2(1 + 2αε)2
2m

ℏ2
(ε+ αε2)τ. (23)

After simplifying the expression, we arrive at the final form of 2D conductivity within

the Kane-band model

σ2D =
e2

2πℏ2

∫
dε

[
−∂f 0(ε;µ, T )

∂ε

]
(ε+ αε2)

(1 + 2αε)
τ. (24)
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The charge carrier densities and electrical conductivity are linearly proportional to the

temperature in the parabolic band limit, as α goes to zero. Therefore, the analytical solutions

for mobility do not depend explicitly on temperature. When the Kane band approximation is

employed, we can see that the charge carrier densities are shifted by 2αε, and the electrical

conductivities are no longer linearly related to energy ε, as seen in Eqs. (15) and (24).

Therefore, the conductivity and charge carrier density ratio no longer gives a constant and is

explicitly temperature-dependent. Therefore, the Kane band model allows for investigating

how mobility changes with temperature within the constant relaxation time approximation.
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IV. NON-PARABOLICITY IN GRAPHYNES

It is commonly assumed that electronic bands exhibit parabolic dispersion near the band

edges. However, deviations from this parabolicity can have a significant impact on the trans-

port properties of materials [10, 11]. In this study, we employed the quasi-linear Kane-band

model[12] to investigate nonparabolic effects in graphynes. The non-parabolicity parameter

α was determined by fitting the energy dispersion near the band edges.

(a) (b)

FIG. 3. (a) Valence and (b) conduction bands graphyne (GY), with the analytical parabolic and

Kane bands.

(a) (b)

FIG. 4. (a) Valence and (b) conduction bands in graphdiyne (GDY), with the analytical parabolic

and Kane bands.

9



V. DENSITIES AND ELECTRICAL CONDUCTIVITIES

The densities and conductivities calculated using DFTBephy, along with the analytical

values obtained based on the parabolic and Kane-band models, are presented in Figures

5 and 6. Due to the band-edge degeneracy of the conduction and valence bands in GDY,

contributions from these degenerate bands have been taken into account in the density and

conductivity calculations. The conductivity values shown in the figures represent the trace

σx + σy.

(d)(c)

(a) (b)

FIG. 5. Densities for (a) holes and (b) electrons graphyne (GY). Effective mass m and non-

parabolicity parameter α values are annotated in the figure. Conductivity values for (c) holes and

(d) electrons.
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(d)(c)

(a) (b)

FIG. 6. Densities for (a) holes and (b) electrons graphdiyne (GDY). Effective mass m and non-

parabolicity parameter α values are annotated in the figure. Conductivity values for (c) holes and

(d) electrons.
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VI. SCATTERING RATES

(a) (b)

(c) (d)

GY GY

GDY GDY

FIG. 7. The scattering rates (inverse life-times) for (a) the holes and (b) the electrons in monolayer

graphyne (GY), as well as for the (c) holes and (d) electrons in monolayer graphdiyne (GDY). In

this plot, scatterings were calculated at fixed temperature T = 300 K and fixed chemical potential

within SERTA. The chemical potentials were set to the band edge values.
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