Supporting Information

Exploring the insertion mechanism of pseudocapacitive

perovskite oxide La-Ni-Co-O anode materials and the

application to Li-ion capacitor and Li-based dual ion

batteries

Yi Li¹, Yuxi Huang ¹, Rui Ding*, Caini Tan, Jian Guo, Yiqing Lu, Zhiqiang Chen, Yibo Zhang

and Runzhi Xu

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education,

College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.

¹The authors contribute equally to the work.

Corresponding author

*E-mails: drm8122@xtu.edu.cn; drm8122@163.com

Table of Contents

Experimental procedures

Section 1. Synthesis of LNCO materials

Section 2. Characterizations

Section 3. Electrochemical measurements

Section 4. calculations for C_m , E_m , P_m

Supplemental Figures

- Fig S1. A picture of LNCO/LO(Ni:Co=1:0~0:1) samples.
- Fig S2. The crystal structures of perovskite LaMO₃ and detailed crystalline parameters for LaNiO₃ and LaCoO₃.
- Fig S3. TEM and HRTEM of LNCO(1:3)/LO.
- Fig S4. (a) EDS (Inset shows scanning spectrum) of LNCO(1:3). (b) XRD peak area fitting.
- Fig S5. Nitrogen sorption isothermals (a), pore volume (b) and pore size distribution (c) of LNCO (1:3)/LO Sample.
- **Fig S6.** Ex-situ XPS spectra of LNCO(1:3)/LO pristine and discharged-0.01 V/charged-3.0 V states during the first discharging/charging cycle at 0.1 A g⁻¹: survey (a), C1s-fitted (a), Li1s- fitted (b) and F1s-fitted (c).
- **Fig S7.** The pseudocapacitive and diffusion-controlled contributions to charge storage in the LNCO(1:3)/LO electrode (the shaded region is the identified pseudocapacitive contribution).
- **Fig S8.** Performance of LNCO(1:0)/LO electrode with A electrolytes: CV plots for the first three cycles at 0.3 mV s⁻¹ (a), GCD curves at 0.1 A g⁻¹ for the first five cycles (b), GCD curves at 0.1-3.2 A g⁻¹ (c), specific capacity and coulombic efficiency at 0.1-3.2 A g⁻¹ (d), and cycling behavior at 2 A g⁻¹ (e).
- **Fig S9.** Performance of LNCO(3:1)/LO electrode with A electrolytes: CV plots for the first three cycles at 0.3 mV s⁻¹ (a), GCD curves at 0.1 A g⁻¹ for the first five cycles (b), GCD curves at 0.1-3.2 A g⁻¹ (c), specific capacity and coulombic efficiency at 0.1-3.2 A g⁻¹ (d), and cycling behavior at 2 A g⁻¹ (e).

- **Fig S10.** Performance of LNCO(1:1)/LO electrode with A electrolytes: CV plots for the first three cycles at 0.3 mV s⁻¹ (a), GCD curves at 0.1 A g⁻¹ for the first five cycles (b), GCD curves at 0.1-3.2 A g⁻¹ (c), specific capacity and coulombic efficiency at 0.1-3.2 A g⁻¹ (d), and cycling behavior at 2 A g⁻¹ (e).
- **Fig S11.** Performance of LNCO(1:3)/LO electrode with A electrolytes: CV plots for the first three cycles at 0.3 mV s⁻¹ (a), GCD curves at 0.1 A g⁻¹ for the first five cycles (b), GCD curves at 0.1-3.2 A g⁻¹ (c), specific capacity and coulombic efficiency at 0.1-3.2 A g⁻¹ (d), and cycling behavior at 2 A g⁻¹ (e).
- **Fig S12.** Performance of LNCO(0:1)/LO electrode with A electrolytes: CV plots for the first three cycles at 0.3 mV s⁻¹ (a), GCD curves at 0.1 A g⁻¹ for the first five cycles (b), GCD curves at 0.1-3.2 A g⁻¹ (c), specific capacity and coulombic efficiency at 0.1-3.2 A g⁻¹ (d), and cycling behavior at 2 A g⁻¹ (e).
- Fig S13. Performance of LNCO(1:3)/LO//AC LICs with A electrolytes: CV windows at 10 mV s⁻¹ (a), CV plots at $10^{\sim}160$ mV s⁻¹ in 4.0 V (b), 4.3 V (c), 4.5 V (d).
- Fig S14. Performance of LNCO(1:3)/LO//KS6 DIBs with A electrolytes: CV windows at 10 mV s^{-1} (a), CV plots at $10^{\sim}160 \text{ mV s}^{-1}$ in 5.0 V (b), 5.2 V (c).
- **Fig S15.** GCD curves of LNCO(1:3)/LO//KS6 DIBs and LNCO(1:3)/LO//AC LICs with A electrolytes: GCD curves at 0.5-8.0 A $\rm g^{-1}$ in 5.0 V (a), 5.2 V (b) of LNCO(1:3)/LO//KS6 Li-DIBs; GCD curves at 0.5-16.0 A $\rm g^{-1}$ in 4.0 V (c), 4.3 V (d), 4.5V (e) of LNCO(1:3)/LO//AC LICs.

Supplemental Tables

- **Table S1.** Chemicals, agents and materials used in the study.
- **Table S2.** Specific capacity and cycling retention of the LNCO/LO(Ni:Co=1:0~0:1) electrodes.
- **Table S3.** Specific capacity cycling retention of AC and KS6 electrodes.
- **Table S4.** Performance summary of the LICs and Li-DIBs in the study under room temperature (25 °C), $m^+/m^-=1:1$.
- **Table S5.** A comparison for the performance of the LNCO(1:3)/LO//AC LICs in the study with some reported LICs.

Table S6. A comparison for the performance of the LNCO(1:3)/LO//KS6 Li-DIBs in the study with some reported Li-DIBs.

References.

Experimental Procedures

Synthesis of LNCO materials

The chemicals in the experiment were of analytical level (A.R.) and directedly used without further treatment (**Table S1**). The LNCO samples were synthesized via precipitation route. Take the procedure of LNCO(1:3) for an example. Firstly, 1.0 mmol La(NO₃)₃·xH₂O, 0.25 mmol Ni(NO₃)₂·6H₂O and 0.75 mmol Co(NO₃)₂·6H₂O were dissolved in 50 mL deionized water, and the mixture was stirred magnetically until fully dispersed. Secondly, a mixture of 2 mol L⁻¹ NaOH and 1 mol L⁻¹ Na₂CO₃ was added to the solution and the pH was adjusted to 10. After standing age for 4 h, it was washed with deionized water for several times and collected by vacuum filtration. The precursor products were dried overnight at 100 °C and calcined in muff furnace at 700 °C for 6 h to obtain the products. The other four LNCO samples (1:0, 3:1, 1:1 and 0:1) were also synthesized as the procedure described above except by using different stoichiometric molar ratios of Ni:Co at the beginning. (The above-mentioned chemicals, agents and materials are listed in the **Table S1**.)

Characterizations

The phases and crystallinity properties were determined by X-ray diffraction (XRD). The surface structures were checked by X-ray photoelectron spectra (XPS). The morphology and size of particles were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The crystalline microstructures were resolved by the high-resolution TEM (HRTEM) and selected area electron diffraction (SAED). The element composition and distribution were measured by the X-ray energy dispersive spectra (EDS), inductively coupled plasma-optical emission spectrometer (ICP-OES) and mapping. The specific surface area, pore volume and size distribution were examined by nitrogen isothermal sorptions with Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods.

Electrochemical measurements

The electrodes were prepared by the following two steps: firstly, A well-dispersed mixture of 70 wt% active materials (as-synthesized LNCO(1:0~0:1) or commercial AC or KS6, 20 wt% acetylene black (AB) conductive agent and 10 wt% polyvinylidene fluoride binder (PVDF, which was dissolved in into the N-methyl-2-pyrrolidone (NMP)) were casted onto the current collectors (Cu foil and carbon-coated Al foil were used for the collectors of anode and cathode respectively), and followed by drying in a vacuum oven at 110 °C for 12 h; secondly, the electrodes were pounched into disks with diameter of 12 mm, and the mass loading of active materials was about 1.2~4.5 mg cm⁻². The electrochemical performances were examined via CHI 660E electrochemical working stations and Neware-CT-4008 testers. Tests for electrodes (LNCO/LO, AC, KS6,) were conducted in halfcells by using the type 2032 coin cells. Tests for LICs (LNCO(1:3)/LO//AC) and Li-DIBs (LNCO(1:3)/LO//KS6) were conducted via full-cells with type 2032 coin cells, with certain mass ratios of anode and cathode

active materials (**Tables S2-4**). The electrolytes used for LNCO/LO, AC, KS6 electrodes, LICs and Li-DIBs were 1 M LiPF₆ dissolved in the mixed solvents of ethylene carbonate (EC), ethylmethyl carbonate (EMC) and dimethyl carbonate (DMC) (1:1:1 in volume) with 1% vinylene carbonate (VC) additives (LBC-305-01, CAPCHEM, marked A electrolytes). All cell assemblies were performed in a high pure Arfilled dry glovebox (MIKROUNA, O_2 and $H_2O<0.1$ ppm) and all tests were carried out at room temperature (about 25 °C). (The more detailed information of the above-mentioned chemicals, agents and materials can be seen the **Table S1**; the calculations for the m_+/m_- , C_m , E_m and P_m can be seen in the Methods.) Specifically, the galvanostatic charge-discharge tests (GCD) (rate, cycle) of LICs and Li-DIBs with anode presodiated at different current densities were on the Neware CT-4008 battery testing system. And the cyclic voltammetry (CV) and electrochemical impedance 6 spectroscopy (EIS) tests were carried out by means of the CHI-660E and CHI-440C electrochemical working stations.

Calculations for C_m , E_m , P_m

The specific capacity (C_m , mAh g⁻¹), energy density (E_m , Wh kg⁻¹) for LICs, energy density (E_m , Wh kg⁻¹) for Li-DIBs, and power density (P_m , kW kg⁻¹) were calculated according to the Equations **S**(1)-**S**(5).

$$m_{+}/m_{-} = 1:1$$
 (1)

$$C_{\rm m} = Q/m \tag{2}$$

$$E_{\rm m}$$
 (Capacitor) = 0.5 ($C_{\rm m} \triangle V$) (3)

$$E_{\rm m}$$
 (Battery) = $(C_{\rm m} V)$ (4)

$$P_{\rm m} = 3.6 E_{\rm m} / t_{\rm d}$$
 (5)

Where m, Q, $\triangle V$, V and t_d refer to the mass of active materials (mg) (for half cells, it means the mass of active materials of anode or cathode; for LICs and Li-DIBs full cells, it means the total masses of active materials of anode and cathode), specific charge or discharge capacity (mAh g⁻¹, for anode, it means the charge capacity; for cathode and full-cells, it refers to the discharge capacity), potential of the discharging plateaus (V), and discharging time (s), respectively.

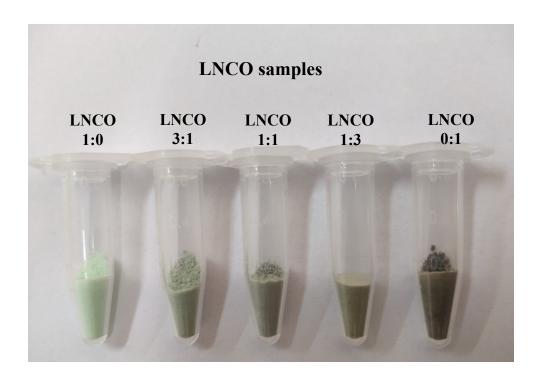
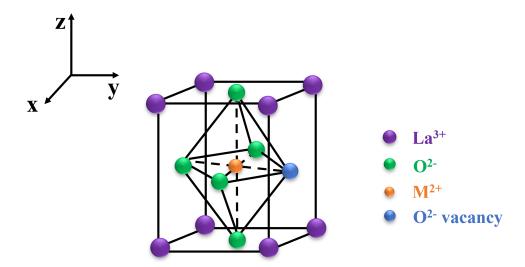



Fig S1. A picture of LNCO/LO(Ni:Co=1:0~0:1) precursor samples.

b

Sample	ICCD-PDF	Crystal system	Space group	Cell (a x b x c) / ų
LaNiO ₃	34-1181	Hexagonal	R-Center	5.451×5.451×6.564
LaCoO₃	48-0123	Hexagonal	R-3c (167)	5.4445×5.4445×13.0936
La ₂ O ₃	05-0602	Hexagonal	P-3m1(164)	3.9373×3.9373×6.1299

Fig S2. The crystal structures of perovskite $LaMO_3$ and detailed crystalline parameters for $LaNiO_3$ and $LaCoO_3$.

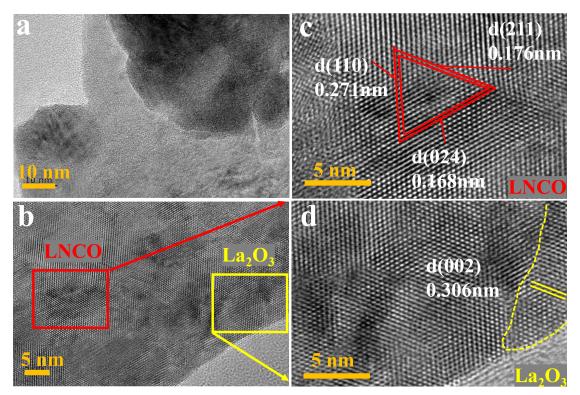
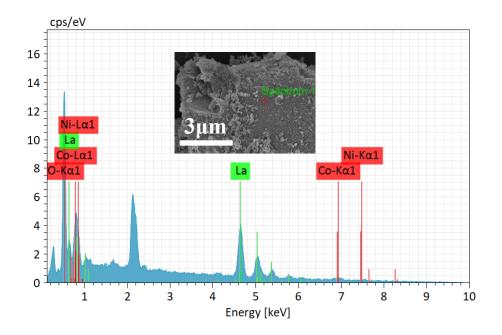



Fig S3. TEM and HRTEM of LNCO(1:3)/LO.

b

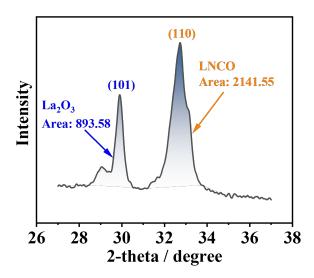
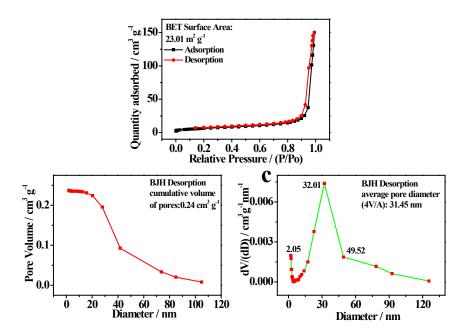
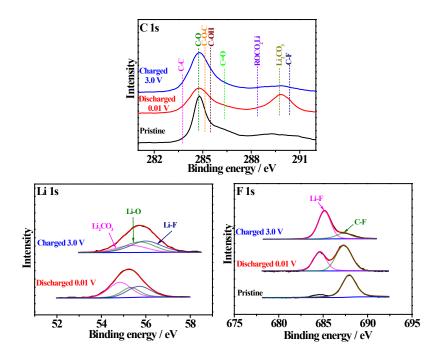
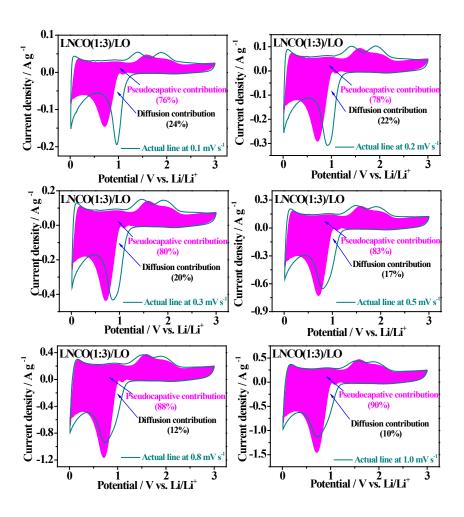
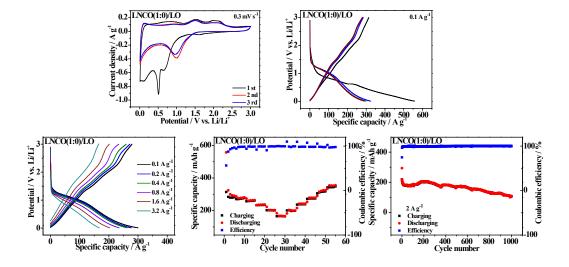
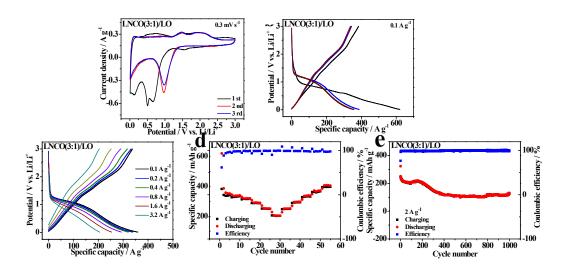
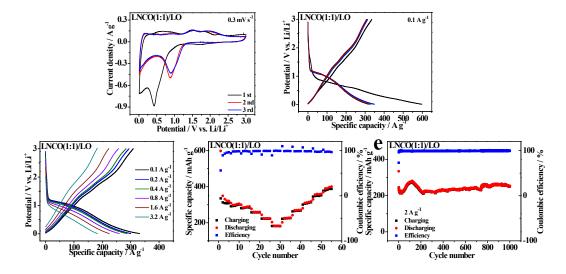


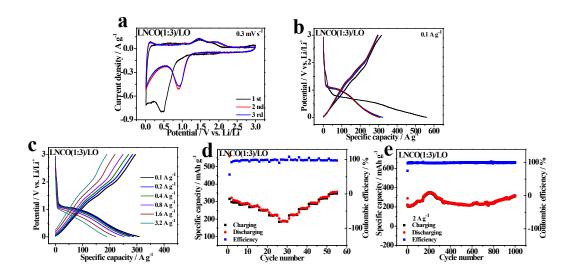
Fig S4. (a)EDS (Inset shows scanning spectrum) of LNCO(1:3). (b) XRD peak area fitting.


Fig S5. Nitrogen sorption isothermals (a), pore volume (b) and pore size distribution (c) of LNCO (1:3)/LO Sample.


Fig S6. Ex-situ XPS spectra of LNCO(1:3)/LO pristine and discharged-0.01 V/charged-3.0 V states during the first discharging/charging cycle at 0.1 A g^{-1} : C1s-fitted (a), Li1s- fitted (b) and F1s-fitted (c).


Fig S7. The pseudocapacitive and diffusion-controlled contributions to charge storage in the LNCO(1:3)/LO electrode (the shaded region is the identified pseudocapacitive contribution).


Fig S8. Performance of LNCO(1:0)/LO electrode with A electrolytes: CV plots for the first three cycles at 0.3 mV s⁻¹ (a), GCD curves at 0.1 A g⁻¹ for the first five cycles (b), GCD curves at 0.1-3.2 A g⁻¹ (c), specific capacity and coulombic efficiency at 0.1-3.2 A g⁻¹ (d), and cycling behavior at 2 A g⁻¹ (e).

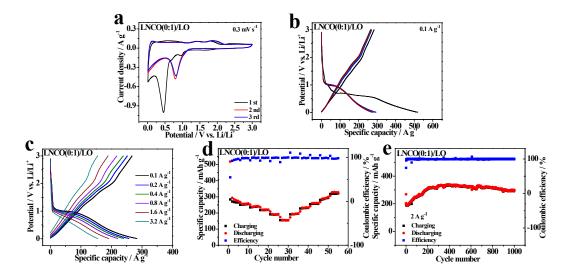

Fig S9. Performance of LNCO(3:1)/LO electrode with A electrolytes: CV plots for the first three cycles at 0.3 mV s⁻¹ (a), GCD curves at 0.1 A g⁻¹ for the first five cycles (b), GCD curves at 0.1-3.2 A g⁻¹ (c), specific capacity and coulombic efficiency at 0.1-3.2 A g⁻¹ (d), and cycling behavior at 2 A g⁻¹ (e).

Fig S10. Performance of LNCO(1:1)/LO electrode with A electrolytes: CV plots for the first three cycles at 0.3 mV s⁻¹ (a), GCD curves at 0.1 A g⁻¹ for the first five cycles (b), GCD curves at 0.1-3.2 A g⁻¹ (c), specific capacity and coulombic efficiency at 0.1-3.2 A g⁻¹ (d), and cycling behavior at 2 A g⁻¹ (e).

Fig S11. Performance of LNCO(1:3)/LO electrode with A electrolytes: CV plots for the first three cycles at 0.3 mV s⁻¹ (a), GCD curves at 0.1 A g⁻¹ for the first five cycles (b), GCD curves at 0.1-3.2 A g⁻¹ (c), specific capacity and coulombic efficiency at 0.1-3.2 A g⁻¹ (d), and cycling behavior at 2 A g⁻¹ (e).

Fig S12. Performance of LNCO(0:1)/LO electrode with A electrolytes: CV plots for the first three cycles at 0.3 mV s⁻¹ (a), GCD curves at 0.1 A g⁻¹ for the first five cycles (b), GCD curves at 0.1-3.2 A g⁻¹ (c), specific capacity and coulombic efficiency at 0.1-3.2 A g⁻¹ (d), and cycling behavior at 2 A g⁻¹ (e).

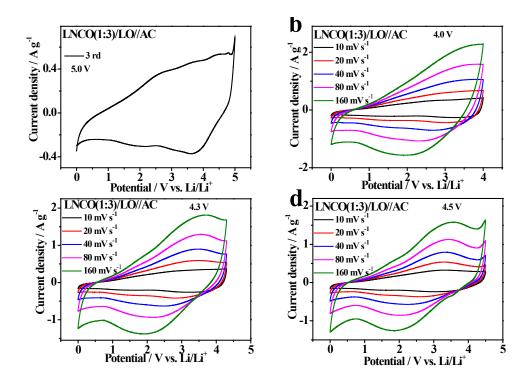


Fig S13. Performance of LNCO(1:3)/LO//AC LICs with A electrolytes: CV windows at 10 mV s^{-1} (a), CV plots at $10^{\sim}160$ mV s^{-1} in 4.0 V (b), 4.3 V (c), 4.5 V (d).

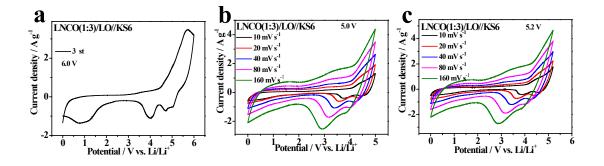
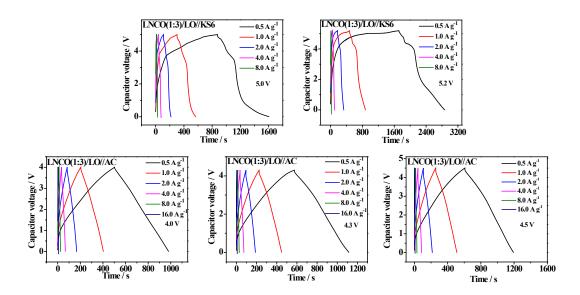



Fig S14. Performance of LNCO(1:3)/LO//KS6 DIBs with A electrolytes: CV windows at 10 mV s⁻¹ (a), CV plots at $10^{\sim}160$ mV s⁻¹ in 5.0 V (b), 5.2 V (c).

Fig S15. GCD curves of LNCO(1:3)/LO//KS6 DIBs and LNCO(1:3)/LO//AC LICs with A electrolytes: GCD curves at 0.5-8.0 A $\rm g^{-1}$ in 5.0 V (a), 5.2 V (b) of LNCO(1:3)/LO//KS6 Li-DIBs; GCD curves at 0.5-16.0 A $\rm g^{-1}$ in 4.0 V (c), 4.3 V (d), 4.5 V (e) of LNCO(1:3)/LO//AC LICs.

Table S1. Chemicals, agents and materials used in the study.

Chemials, Agents and Materials	Туре	Company	Characteristics	
La(NO ₃)₃•xH₂O	AR	SinoPharm	La₂O₃≥44%	
Ni(NO₃)₂•6H₂O	AR	SinoPharm	purity≥98.0%	
Co(NO₃)₂•6H₂O	AR	SinoPharm	purity≥98.5%	
NaOH	AR	SinoPharm	purity≥96.0%	
Na₂CO₃	AR	SinoPharm	purity≥99.8%	
AC	YEC 8b	FuZhou YiHuan	D50: ~10 μm; Density: 0.4 g cm ⁻³ ; SSA:2000~2500 m ² g ⁻¹	
Graphite	KS6	TiMCAL	D90: 5.8-7.1 μ m; Interlayer distance: 0.3354-0.3360 nm; SSA: 20 m ² g ⁻¹ ; Density-Scott: 0.07 g cm ⁻³ ;	
АВ	Battery grade		/	
NMP	AR	Kermel	purity≥99.0%	
PVDF	Battery grade		/	
Electrolytes	LBC-305-01	САРСНЕМ	1 M LiPF ₆ /EC:EMC:DMC (1:1:1) /1% VC	
Li plate	15.6*0.45 mm	China Energy	15.6*0.45 mm	
Cu foil	200*0.015	GuangZhou JiaYuan	Total thickness: 15 μm; weight: 87 g m ⁻²	
Carbon coated-Al foil	222*0.015	GuagZhou NaNuo	Total thickness: 17 μm; Strength: 192 Mpa	
Glass microfiber filters	GF/D 2.7 μm; 1823-025	Whatman	Diameter: 25 mm; Thickness: 675 μm; weight: 121 g m ⁻²	
Cell components	CR-2032	ShenZhen TianChenHe	/	

Table S2. Specific capacity and cycling retention of the LNCO/LO(Ni:Co= $1:0^{\sim}0:1$) electrodes.

	Specific capacity of LNCO/LO(1:0~0:1) electrodes / (mAh g-1)				
Current density					
/ (A g ⁻¹)	1:0	3:1	1:1	1:3	0:1
0.1	279.2	337.5	309.1	294.9	267.6
0.2	272.0	332.3	294.2	284.3	252.2
0.4	259.4	317.1	284.0	270.0	238.9
0.8	233.9	290.2	257.1	249.3	217.8
1.6	201.4	252.3	223.0	219.5	189.3
3.2	166.2	204.4	182.1	189.3	154.7
Cycling behavior					
Retention% / 2 A g ⁻¹ / 1000 cycles	48%	51%	103%	146%	148%

Table S3. Specific capacity cycling retention of AC and KS6 electrodes.

	Specific capacity of Positive electrodes / (mAh g ⁻¹)		
Current density			
/ (A g ⁻¹)	AC	KS6	
0.1	86.3	91.5	
0.2	74.1	74.3	
0.4	66.0	71.0	
0.8	58.9	66.4	
1.6	52.4	58.2	
3.2	46.2	41.8	
Cycling behavior			
Retention% / 1 A g ⁻¹ /	77%	84%	
1000 cycles			

Table S4. Performance summary of the LICs and Li-DIBs in the study under room temperature (25 $^{\circ}$ C), m⁺/m⁻=1:1.

Туре	Capacitor or Cell system	Working voltage / V	Energy density / Wh kg ⁻¹	Power density / kW kg ⁻¹	Cycling behavior / retention%, repeated cycles, current density
LICs	LNCO(1:3) /LO//AC	0.01-4.0	66.1-55.4 46.3-37.5 26.7-15.6	0.5-1.0 2.0-4.0 8.0-16.0	85%/1000/5 A g ⁻¹ 83%/2000/5 A g ⁻¹ 74%/3000/5 A g ⁻¹ 77%/4000/5 A g ⁻¹ 68%/5000/5 A g ⁻¹
		0.01-4.3	80.6-66.5 56.2-44.6 33.2-21.0	0.5-1.0 2.2-4.3 8.6-17.2	56%/1000/5 A g ⁻¹ 52%/2000/5 A g ⁻¹ 40%/3000/5 A g ⁻¹ 33%/4000/5 A g ⁻¹ 30%/5000/5 A g ⁻¹
		0.01-4.5	87.1-75.6 63.9-51.5 36.3-19.1	0.5-1.0 2.2-4.3 8.6-17.2	52%/1000/5 A g ⁻¹ 43%/2000/5 A g ⁻¹ 40%/3000/5 A g ⁻¹ 38%/4000/5 A g ⁻¹ 37%/5000/5 A g ⁻¹
Li-DIBs	LNCO(1:3) /LO//KS6	0.01-5.0	116.2-99.4 72.9-52.8-36.1	0.6-1.4 2.5-5.0-10.0	93%/100/2 A g ⁻¹ 88%/200/2 A g ⁻¹ 81%/300/2 A g ⁻¹ 70%/400/2 A g ⁻¹ 60%/500/2 A g ⁻¹ 37%/1000/2 A g ⁻¹
		0.01-5.2	206.0-166.3 114.0-69.3-40.4	0.6-1.5 2.6-5.2-10.4	60%/100/2 A g ⁻¹ 49%/200/2 A g ⁻¹ 39%/300/2 A g ⁻¹ 29%/400/2 A g ⁻¹ 22%/500/2 A g ⁻¹ 12%/1000/2 A g ⁻¹

Table S5. A comparison for the performance of the LNCO(1:3)/LO//AC LICs in the study with some reported LICs.

LICs	Working voltage/ V	Energy density / Wh kg ⁻¹	Power density / kW kg ⁻¹	Cycling behavior / retention%, repeated cycles, current density	Refs.
Li ₃ VO ₄ /N-C//AC	1.0-4.0	136.4-24.4	0.53-11	87%/1500/2 A g ⁻¹	1
TiNb ₂ O ₇ @C//CFs	0.8-3.2	110.4-20	0.1-5.46	77%/1500/0.2 A g ⁻¹	2
MnO@C//PC	0.1-4.0	117.6-27.8	0.4-10.2	76%/5000/1 A g ⁻¹	3
AC/TiO ₂ @PCNF-12	0.0-3.0	67.4-27.5	0.075-5	85%/10000/10 A g ⁻¹	4
AC-HBP//LiC ₆	2.0-3.9	100-20	0.3-2	70%/2000/0.5 A g ⁻¹	5
TiO ₂ /graphene//AC	1.0-3.0	42-8.9	0.8-8	100%/6500/4 A g ⁻¹	6
H-TiO2/PPy/SWCNTs//AC	1.0-3.0	31.3-1.9	0.2-4.0	77.8%/3000/0.5 A g ⁻¹	7
SnO ₂ -C//C	0.5-4.0	110-45	0.19-2.96	80%/2000/1 A g ⁻¹	8
Graphene-VN//cabron nanorods	0.0-4.0	162-64	0.2-10	83%/1000/2 A g ⁻¹	9
T-Nb ₂ O ₅ /Graphene paper//AC	0.5-3.0	47-15	0.39-18	93%/2000/0.25 A g ⁻¹	10
Fe₃O₄/Graphene// Graphene	1.0-4.0	147-86	0.15-2.5	70%/1000/2 A g ⁻¹	11
LNCO(1:3)/LO//AC	0.01-4.0	66.1-55.4 46.3-37.5 26.7-15.6	0.5-1.0 2.0-4.0 8.0-16.0	85%/1000/5 A g ⁻¹ 83%/2000/5 A g ⁻¹ 74%/3000/5 A g ⁻¹ 77%/4000/5 A g ⁻¹	This work
		26.7-15.6	8.0-16.0	77%/4000/5 A g ⁻¹ 68%/5000/5 A g ⁻¹	

Table S6. A comparison for the performance of the LNCO(1:3)/LO//KS6 Li-DIBs in the study with some reported Li-DIBs.

Li-DIBs	Working voltage/ V	Energy density / Wh kg ⁻¹	Power density / kW kg ⁻¹	Cycling behavior / retention%, repeated cycles, current density	Refs.
Graphite//Graphite	0.01-5.2	108		67%/50/0.05 A g ⁻¹	12
Si-compound//Graphite	0-3	54		53%/100/0.1 A g ⁻¹	13
Nb ₂ O ₅ //Graphite	1.5-3.5	52		84%/100/0.1 A g ⁻¹	14
TiO ₂ //Graphite	1.5-3.7	36		88%/50/0.1 A g ⁻¹	15
MoO₃//Graphite	1.5-3.5	77		90%/200/0.081 A g ⁻¹	16
AC//Graphite	0-3.5	150		98% /100 /1.86 mA cm ⁻²	17
Graphite//Graphite	3-5	170		94%/500/0.5 A g ⁻¹	18
Al//Graphite	3.0-5.0	150	1.2	98%/600/0.2 A g ⁻¹	19
MTI//KS6-DIB	3.0-5.1	125	0.4	90%/200/0.5 A g ⁻¹	20
LNCO(1:3)/LO//KS6	0.01-5.0	116.2-99.4 72.9-52.8-36.1	0.6-1.4 2.5-5.0-10.0	93%/100/2 A g ⁻¹ 88%/200/2 A g ⁻¹ 81%/300/2 A g ⁻¹ 70%/400/2 A g ⁻¹ 60%/500/2 A g ⁻¹ 37%/1000/2 A g ⁻¹	This work

References

- L. F. Shen, H. F. Lv, S. Q. Chen, P. Kopold, P. A. van Aken, X. J. Wu, J. Maier and Y. Yu, *Adv. Mater.*, 2017, 29, 1700142.
- 2. X. F. Wang and G. Z. Shen, *Nano Energy*, 2015, **15**, 104-115.
- 3. D. Yan, S.-H. Li, L.-P. Guo, X.-L. Dong, Z.-Y. Chen and W.-C. Li, *ACS Appl. Mater. Interfaces*, 2018, **10**, 43946-43952.
- 4. C. Yang, J.-L. Lan, W.-X. Liu, Y. Liu, Y.-H. Yu and X.-P. Yang, ACS Appl. Mater. Interfaces, 2017, **9**, 18710-18719.
- 5. A. Jain, S. Jayaraman, M. Ulaganathan, R. Balasubramanian, V. Aravindan, M. P. Srinivasan and S. Madhavi, *Electrochim. Acta*, 2017, **228**, 131-138.
- 6. H. Kim, M. Y. Cho, M. H. Kim, K. Y. Park, H. Gwon, Y. Lee, K. C. Roh and K. Kang, *Adv. Energy Mater.*, 2013, **3**, 1500-1506.
- 7. G. Tang, L. J. Cao, P. Xiao, Y. H. Zhang and H. Liu, *J. Power Sources*, 2017, **355**, 1-7.
- 8. W.-H. Qu, F. Han, A.-H. Lu, C. Xing, M. Qiao and W.-C. Li, J. Mater. Chem. A, 2014, 2, 6549-6557.
- 9. R. T. Wang, J. W. Lang, P. Zhang, Z. Y. Lin and X. B. Yan, *Adv. Funct. Mater.*, 2015, **25**, 2270-2278.
- L. P. Kong, C. F. Zhang, J. T. Wang, W. M. Qiao, L. C. Ling and D. H. Long, *ACS Nano*, 2015, 9, 11200-11208.
- F. Zhang, T. F. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang and Y. S. Chen, *Energy Environ. Sci.*, 2013,
 6, 1623-1632.
- 12. J. A. Read, A. V. Cresce, M. H. Ervin and K. Xu, *Energy Environ. Sci.*, 2014, **7**, 617-620.
- 13. H. Nakano, Y. Sugiyama, T. Morishita, M. J. S. Spencer, I. K. Snook, Y. Kumai and H. Okamoto, *J. Mater. Chem. A*, 2014, **2**, 7588-7592.
- 14. G. Park, N. Gunawardhana, C. Lee, S.-M. Lee, Y.-S. Lee and M. Yoshio, *J. Power Sources*, 2013, **236**, 145-150.
- 15. A. K. Thapa, G. Park, H. Nakamura, T. Ishihara, N. Moriyama, T. Kawamura, H. Wang and M. Yoshio, *Electrochim. Acta*, 2010, **55**, 7305-7309.
- 16. N. Gunawardhana, G.-J. Park, N. Dimov, A. K. Thapa, H. Nakamura, H. Wang, T. Ishihara and M. Yoshio, *J. Power Sources*, 2011, **196**, 7886-7890.
- 17. T. Ishihara, Y. Yokoyama, F. Kozono and H. Hayashi, *J. Power Sources*, 2011, **196**, 6956-6959.
- 18. S. Rothermel, P. Meister, G. Schmuelling, O. Fromm, H.-W. Meyer, S. Nowak, M. Winter and T. Placke, *Energy Environ. Sci.*, 2014, **7**, 3412-3423.

- 19. X. L. Zhang, Y. B. Tang, F. Zhang and C. S. Lee, *Adv. Energy Mater.*, 2016, **6**, 1502588.
- 20. C. Y. Chan, P.-K. Lee, Z. Xu and D. Y. W. Yu, *Electrochim. Acta*, 2018, **263**, 34-39.