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Figure S1. Starting geometry for the 8-pHD108 peptide systems with lipids in the
inner region delineated by the peptides. (A, B) Cut-away view of the 8 peptides in a
hydrated lipid membrane environment, viewed from the surface of the membrane
(panel A) vs. across the membrane (panel B). Peptides are shown as ribbons, lipid,
water molecules, and ions, as van der Waals spheres. (C, D) Peptides with their Glu
and His sidechains shown as van der Waals spheres, viewed from the surface of the
bilayer (panel C) vs. laterally (panel D). For clarity, only the H atoms bound to His-
Ne2 are shown. Note that this image was prepared from the starting geometry of the
simulation with all Glu sidechains negatively charged, and all His in the -Ne2
tautomeric state. (E) View from the membrane surface of the peptides in the starting
geometry, with the E15 and E18 sidechains shown as van der Waals spheres colored
orange and violet, respectively. Lipids shown have any atom within 3.5A of the E15
and E18 carboxylic atoms Og1 or Og2.



Figure S2. Starting coordinates of an 8-mer with water filling the inner region
delineated by the peptides. Peptides are shown as cartoons colored yellow. (A, B)
Cut-away views from the membrane surface (panel A) vs. side view (panel B).
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Figure S3. Time series of the number of H-bonds sampled during the main
simulations. We used the complete production runs to compute the H-bond graphs
for the direct H-bonds between sidechains and three-water bridges. We summed up
all intra-peptide H-bonds (‘peptides’, black) vs. all inter-peptide H-bonds (‘inter-
peptide’, magenta). For clarity, we plot values with a timestep of 100ps. A-D. Numbers
of direct and water-mediated bridges computed for intra- and inter-peptide
interactions sampled in each of the main simulations.
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Figure S4. Time series of the number of H-bonds sampled during the repeat
simulations. A-D. Number of direct and water-mediated H-bonds sampled during
each of the repeat simulations.
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Figure S6. lllustration of the pore interactions sampled in the repeat simulations. A-
D. Molecular graphics prepared from the repeat simulations. E. For comparison, we
also show images from the Sim5-/L* simulation.
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Figure S7. Sim 5-/L and Sim 3-/L Average number of water molecules in water-
mediated bridges computed for the direct and 3-water mediated bridges between
sidechains. A. Sim 5-/L with all Glu and His residues deprotonated. B. Sim 3-/L with
all Glu sidechains negatively charged, and all His, positively charged. The initial
configurations had lipids inside the region delineated by the peptides, Fig. S1.
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Figure S8. H-bond graphs computed from Sim 5-/L. The red asterisks in panels A
and C indicate sites where peptides inter-connect. Values on the connecting lines are
% occupancy for that interaction over the last 200 ns of the simulation. A. Graph of
the direct H-bonds between peptide sidechains. B. Graph of the one-water-mediated
bridges between peptide sidechains. C. Graph of the direct and water-mediated H-
bonds with three or fewer waters. The minimum H-bond occupancy shown is 10% in
panel A, and 30% in panels B-C. D. View, from the membrane surface, of the eight
peptides color coded to match the nodes in panels A, B and C. Glu, GIn, His, and Trp
sidechains of peptide G are shown as van der Waals spheres. E. Close view of
peptide A with labels for selected sidechains.
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Figure S9. H-bond graphs computed from Sim 5-/L* in which peptides B-H have
deptotonated Glu and His residues and peptide A has protonated Glu and
deprotonated His. The red asterisks in panels A and C indicate sites where peptides
inter-connect. Values on the connecting lines are % occupancy for that interaction
over the last 200 ns of the simulation. A. Graph of the direct H-bonds between peptide
sidechains. B. Graph of the one-water-mediated bridges between peptide sidechains.
C. Graph of the direct and water-mediated H-bonds with three or fewer waters. The
minimum H-bond occupancy shown is 10% in panel A, and 30% in panels B-C. D.
View, from the membrane surface, of the eight peptides color coded to match the
nodes in panels A, B and C. E&F. Individual views of individual peptides in the pore.
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Figure S11. H-bond graphs computed from Sim 2+/L in which peptides have
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panels A and C indicate sites where peptides inter-connect. Values on the connecting
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surface, of the eight peptides color coded to match the nodes in panels A, B and C.
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Figure S12. Sim 5-/L repeat. H-bond graph for direct H-bonds between sidechains
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Figure S$16. Final structures from Sim 5-/W in which peptides have deprotonated Glu
and deprotonated His. Initial structure had water in the areas delineated by peptide.
(A, B) Cut-away view of the peptides showing water inside the region delineated by
the peptides (panel A) and lipids (panel B). Note that the peptide colored green has
partially de-inserted. (C, D) Close view of the peptides viewed laterally along the
membrane normal (panel C) vs. from the membrane interface (panel D). (E) The
same representation of the peptides as in panel D, now with the Glu, His, GIn, and
Trp sidechains shown as van der Waals spheres. Glu and His are in atom colors, Gin,
violet, and Trp, iceblue.
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deprotonated Glu and deprotonated His. Initial structure had water in the areas
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between peptide sidechains. B. Graph of the one-water-mediated bridges between
peptide sidechains. C. Graph of the direct and water-mediated H-bonds with three or
fewer waters. The minimum H-bond occupancy shown is 10% in panel A, and 30% in
panels B-C. D&E. View, from the membrane surface, of the eight peptides color coded
to match the nodes in panels A, B and C.
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Figure S21. Final structures from Sim 0-/W in which peptides have protonated Glu
and deprotonated His and are thus uncharged. Initial structure had water in the areas
delineated by peptide. (A, B) Cut-away view of the peptides showing water inside the
region delineated by the peptides (panel A) and lipids (panel B). Note that the peptide
colored green has partially de-inserted. (C, D) Close view of the peptides viewed
laterally along the membrane normal (panel C) vs. from the membrane interface
(panel D). (E) The same representation of the peptides as in panel D, now with the
Glu, His, GIn, and Trp sidechains shown as van der Waals spheres. Glu and His are
in atom colors, GIn, violet, and Trp, iceblue.
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Figure S22. H-bond graphs computed from Sim 0-/W in which peptides have
protonated Glu and deprotonated His and are thus uncharged. Initial structure had
water in the areas delineated by peptide. The red asterisks in panels A and C indicate
sites where peptides inter-connect. Values on the connecting lines are % occupancy
for that interaction over the last 200 ns of the simulation. A. Graph of the direct H-
bonds between peptide sidechains. B. Graph of the one-water-mediated bridges
between peptide sidechains. C. Graph of the direct and water-mediated H-bonds with
three or fewer waters. The minimum H-bond occupancy shown is 10% in panel A,
and 30% in panels B-C. D&E. View, from the membrane surface, of the eight peptides
color coded to match the nodes in panels A, B and C.
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Figure S23. Radial distribution functions of the water oxygen atoms (blue) and lipid

phosphate atoms (brown) within 10 A of the peptide hetero-atoms. A-L: Results from

all simulations are shown. Radial distribution functions computed from each of the
simulations using the Radial Pair Distribution Function plugin in VMD. We used
simulation.

~4500 equally spaced coordinate snapshots from the last about 45 ns of each
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