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Figure S1. Titration of 50 µM (A) and 25 µM (B) MDAP with MMT at different concentrations (0-

0.07 %). C) Comparison between the two MDAP concentrations, highlighting the saturation point 

of the quenching phenomenon. D) Titration of 0.05 % MMT with different concentrations of 

MDAP (0-50 µM). The quenching effect was visible at 10 µM of MDAP, reaching a maximum at 

50 µM (E).  
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Figure S2. A) Morphological characterization of pristine MMT and MDAP@MMT (50 µM MDAP 
to 0.05% MMT) via SEM indicating that the particles maintain their typical layered structure. B) 
Zeta potential measured for pristine MMT (0.05 %) and of the final probe MDAP@MMT (50 µM 
and 0.05 % respectively) showing a slight decrease of MMT’s surface charge upon MDAP 
adsorption. Data represent mean values ± standard deviation (n = 3). 

 

 

 

 

 

Figure S3. Evaluation of sensor performance by varying the MDAP/MMT ratio. Panels A–C 
demonstrate that the MDAP concentration primarily governs the saturation behavior of the 
sensor. 
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Figure S4. A) After 7 days of dialysis, no traces of MDAP were detected in the solution (red dots) 

as quantified with the calibration curve of MDAP (black squares). B) The signal of the 

MDAP@MMT remain stable during the 7-days dialysis. Values are reported as average values 

(n=3), ± sd.     
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Figure S5. Attenuation of MDAP@MMT fluorescence upon addition of selected 

neurotransmitters, biosynthetic precursors, and other neuroactive metabolites. 
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Figure S6.Rapid quenching kinetics of the MDAP@MMT probe upon analyte addition: equilibrium 

fluorescence is reached within 60 s. 
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Figure S7:  Statistical analysis of responsiveness of MDAP@MMT for different NTs. Data are 
reported as mean ± sd (n = 3). * Sample means are statistically different (ANOVA One-way, n = 3, 
𝛼 0.05, post hoc Tukey’s test). 

 

Figure S8. Analytical performance of MDAP@MMT toward catecholamine-type NTs. Limits of 

detection (µM): dopamine 11.0, serotonin 2.80, epinephrine 31.0, L-tryptamine 8.35, L-tyramine 

19.2. 
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Figure S9: Dopamine titration of MDAP@MMT (0.05 wt % MMT, 50 µM MDAP, 25 °. Normalized 

emission at 425 nm vs DA concentration for five automated replicas (symbols) and their 1:1 fits 

(lines). A 1:1 direct-binding model (DBA) was fitted to five independent titrations. For each 

replicate the parameters Ka, Io, IMDAP@MMT and I(DA•MDAP)@MMT were optimized with 

RMSE and R². The average fit result is Ka = (8.3 ± 1.1) × 104 M⁻¹. These values confirm a high-

affinity 1:1 interaction between dopamine and the MDAP·MMT suspension in aqueous media. 
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Figure S10: Figure S 8: FT-IT analysis confirming the adsorption of NTs on the probe. After 
treatment with 100 μM of DA, the powder isolated by centrifugation and dried showed the peaks 
typically assigned to the N-H, O-H, and C-H stretching of DA, which are not present in the spectra 
of MDAP@MMT. 
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Figure S11. A) Sensing activity of MDAP@MMT in the presence of protein is retained only when 

the probe is immobilized in agarose hydrogel. B) Signal stability over time of free MDAP@MMT 

(black squares) compared to agarose‐embedded MDAP@MMT (red circles) in cell culture 

medium (DMEM) supplemented with 10% fetal bovine serum (FBS). C) Fluorescence response of 

agarose-embedded MDAP@MMT to increasing concentrations of dopamine, in DMEM + 10% 

FBS. D) Responsiveness of agarose-embedded MDAP@MMT toward dopamine (0-100 µM) in 

DMEM + 10% FBS (no phenol red). Data are plotted as mean ± standard deviation (n = 3). 
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Figure S 12: Comparison of the MDAP@MMT’s signal variation when treated with DA or L-DOPA. 
The unstable adsorption of L-DOPA that could explain the fluctuation of signal intensity was 
attributed to its zwitterionic form.    

 

 

 

Figure S13. Calibration curve for DA in HBSS (R² = 0.86, slope = 1.4) employed for quantifying 

dopamine release from dopaminergic cells after CU treatment. Values are mean ± SD (n = 3). 
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Table S1: Summary of representative DA detection systems, highlighting their key features and 

corresponding limits of detection (LOD). 

System LOD (for DA) Sensing Conditions Key Materials / 

Probes 

Reference 

Aptamer-

functionalized 

graphene FET 

(electrochemical 

transistor) 

1 aM (10⁻¹⁸ M) Artificial 

cerebrospinal fluid 

(aCSF); DA-spiked 

brain homogenate; 

pH ~7.4 

Graphene 

multitransistor array 

functionalized with 

dopamine-binding 

aptamer 

Abrantes M. et al.1 

DNA-origami SERS 

sensor (plasmonic 

nanostar dimer) 

0.225 fM (2.25×10⁻¹⁶ 

M) 

Aqueous buffer; 

dried on SERS 

substrate 

DNA origami-

templated Au@Ag 

nanostar dimers 

Kaur V. et al.2 

Spread-spectrum 

SERS (label-free) 

1.9 aM (1.9×10⁻¹⁸ M) Saline solution (0.9% 

NaCl) 

Au nanoisland SERS 

substrate with 

spread-spectrum 

excitation 

Lee W. et al.3 

Fluorescent Au 

nanocluster (turn-

off) 

0.62 nM (PBS) / 0.83 

nM (CSF) 

PBS buffer (0.5 mM, 

pH 7.2) and spiked 

human CSF 

BSA-stabilized Au 

nanoclusters 

Govindaraju S. et al.4 

Fluorescent carbon 

dots (boronic acid 

functionalized, turn-

on) 

0.1 pM (1×10⁻¹³ M) Aqueous buffer, 

neutral pH 

B–N co-doped 

carbon dots with 

boronic acid and 

amine groups 

Liu X. et al.5 

Fluorescent 

polydopamine 

nanoparticles (turn-

on) 

40 nM Alkaline solution 

(Tris/NaOH), pH > 8 

Dopamine self-

polymerization to 

polydopamine 

nanoparticles 

Yildirim A. et al.6 

Fluorescent carbon 

dot probe (in situ 

synthesis) 

56.2 nM Mild aqueous 

conditions (37 °C); 

tested in human 

serum 

In situ formation of 

green fluorescent 

carbon dots from 

dopamine and 

aminosilane 

(AEATMS) 

Tang X. et al.7 

Colorimetric Au 

nanoparticle assay 

2 nM Aqueous buffer; 

tested in artificial 

CSF 

DSP-modified Au 

nanoparticles with 

Fe³⁺ crosslinking of 

catechol groups 

Liu L. et al.8 
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