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S1. Computational details

The calculations are done using the PWSCF code in the Quantum Espresso software suite based
on DFT and plane-wave pseudopotential approach.! The generalized-gradient-approximation
(GGA) with non-empirical Perdew-Burke-Ernzerhof (PBE) parameterization is used to treat
the exchange-correlation functional in the calculations.” The electron-ion interactions are
modelled using the scalar-relativistic Optimized Norm-Conserving Vanderbilt Pseudopotential
(ONCVPSP).° The kinetic energy cutoff (ecutwfc) and the charge density cutoff (ecutrho) for
the wavefunctions is kept at 50 Ry, and 300 Ry, respectively. The sampling of the primary
Brillouin zone (BZ) for BNNT, monolayer SnS, SnS/BNNT heterostructures are done at
I1x6x1, 6x6x1, 6x6x1 k-point grid, respectively generated via the Monkhorst-Pack scheme.
For a precise integration of the BZ during the non-self-consistent calculations, an even denser
corresponding k-grid of 1x18x1, 12x12x1, 12x12x1, are considered for the three structures
respectively. An energy convergence threshold of 10* Ry and a force convergence threshold
of 10~ Ry/Bohr are used to relax the lattice and atomic parameters. The convergence criteria
for self-consistent calculation are set at 10 Ry. Semi-empirical Grimme’s DFT-D2 parameter

accounts for the vdW force in the heterostructure.’

Lattice mismatch along the direction of the nanotube axis is calculated by,

LsnsTLBNNT o 100 (D

Lsns

here, Lg,s and LgynT are the lattice parameters of SnS supercell and BNNT unit cell along y-

direction.
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The interface binding energy (Ep) per unit cell of the heterostructure is calculated by the

following formula:
Ey = ESnS/BNNT — Esns — EgnnT ..(2)

the terms FEsns/gnnt, Esns, Ennrt represent the total energies of the SnS/BNNT

heterostructure, isolated SnS layer, and BNNT, respectively.

The equation to calculate the charge density difference (CDD) is as follows:

A p = Psns/BNNT — Psns — PBNNT ..(3)

where, Psns/BNNT, Psns» Pennt indicate the overall charge densities of the SnS/BNNT

heterostructure, isolated SnS layer, and BNNT, respectively.

Beyond DFT, the energy levels are corrected by introducing quasiparticle interactions through
GW computations based on MBPT. The quasiparticle interaction is introduced by the following

non-linear equation,
Exi = €ni + Znie < Wil E(E ) = Viee| Wi > (4)

where the term Z, represents renormalisation factor. With the evaluation of the dynamical
and static components in the self-energy (X), the plasmon-pole approximation (PPA) is used to

determine the single pole function frequency subjected to the dielectric matrix.’

The excitonic electron-hole effect is incorporated by solving the Bethe-Salpeter Equation

(BSE) 9,10’
(Eer — Evi)Asex + Tpwrer < vCk K [0/ 'k > AS) 10 = QSAS ..(5)

where, the screened interaction between excited electrons and holes are described by the kernel
term K°".%10 The terms A, and 02° represent the electron-hole amplitudes, and the exciton
energy, respectively. E;, and E,, are the quasiparticle energies of the electron and hole states.
The subscripts v, ¢, and k represents the valence band (VB), conduction band (CB), and k

vector, respectively. The GW+BSE computation is done using the YAMBO package.!""!?

The number of bands used to construct the RPA response function for the SnS/(5,0), SnS/(6,0),
and SnS/(7,0) BNNT heterostructures were set to 180, 200, and 200, respectively. The

dielectric matrix (¢'Gc’) was expanded using four energy blocks (4 Ry cutoff) for all



heterostructures. Similarly, the number of unoccupied states included in the correlation self-

energy summation were 180, 200, and 200 for SnS/(5,0), SnS/(6,0), and SnS/(7,0) BNNT,

respectively. The convergence tests for these parameters are presented in Figs. S1-S3.
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Figure S1: Convergence tests for the SnS/(5,0) BNNT heterostructure: (a) kinetic energy cutoff for wavefunctions
and (b) k-point sampling at the DFT-GGA level. Convergence with respect to (c) the number of unoccupied states
included in the correlation self-energy summation, and (d—f) the number of bands used to construct the RPA

response function (BndsRnXp) and the number of dielectric matrix blocks considered for the valence band,
conduction band, and band gap energy, respectively.
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Figure S2: Convergence tests for the SnS/(6,0) BNNT heterostructure: (a) kinetic energy cutoff for wavefunctions
and (b) k-point sampling at the DFT-GGA level. Convergence with respect to (c) the number of unoccupied states
included in the correlation self-energy summation, and (d—f) the number of bands used to construct the RPA
response function (BndsRnXp) and the number of dielectric matrix blocks considered for the valence band,
conduction band, and band gap energy, respectively.
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Figure S3: Convergence tests for the SnS/(7,0) BNNT heterostructure: (a) kinetic energy cutoff for wavefunctions
and (b) k-point sampling at the DFT-GGA level. Convergence with respect to (c) the number of unoccupied states
included in the correlation self-energy summation, and (d—f) the number of bands used to construct the RPA
response function (BndsRnXp) and the number of dielectric matrix blocks considered for the valence band,
conduction band, and band gap energy, respectively.

Figure S4: (a-c) Convergence test for lattice parameters vs. ground state energy; (d) AIMD simulation
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Figure S5: (a) Electronic band structure and (b) optical absorption spectra of SnS monolayer.
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Figure S6: Electronic band structure of (a) (5,0) (b) (6,0), and (c) (7,0) BNNTSs; (d) optical absorption spectra of
the BNNTs.
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Figure S7: Electronic band structures of the SnS/(5,0) BNNT heterostructure under uniaxial strain applied along

the nanotube axis. Panels (a-c) show the band structures under compressive strain of -1%, -3%, and -5%,

respectively, while panels (d-f) correspond to tensile strain of +1%, +3%, and +5%.

Table S1: Peak positions of the IDEs under tensile strain.

Strain % IDEs energies (eV) No. of IDEs
0 (unstrained) 2.68 1
1% 2.50, 2.56,2.64,2.67,2.70 5
3% 2.48,2.54,2.67,2.70,2.74,2.77, 2.80, 2.83 8
5% 2.00, 2.32, 2.36, 2.40, 2.43, 2.48, 2.52, 2.54, 2.57, 2.63 10
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Figure S8: Optical absorption spectra of the SnS/(5,0) BNNT heterostructure under uniaxial tensile strain of (a)
1%, (b) 3%, and (c) 5%. The corresponding schematic illustrations in (d-f) depict the evolution of the C; and C,
conduction bands with increasing tensile strain, highlighting the increase in the number of available IDE transition

states across the I'-X valley.
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