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S1. Computational details 

The calculations are done using the PWSCF code in the Quantum Espresso software suite based 

on DFT and plane-wave pseudopotential approach.1–4 The generalized-gradient-approximation 

(GGA) with non-empirical Perdew-Burke-Ernzerhof (PBE) parameterization is used to treat 

the exchange-correlation functional in the calculations.5 The electron-ion interactions are 

modelled using the scalar-relativistic Optimized Norm-Conserving Vanderbilt Pseudopotential 

(ONCVPSP).6 The kinetic energy cutoff (ecutwfc) and the charge density cutoff (ecutrho) for 

the wavefunctions is kept at 50 Ry, and 300 Ry, respectively. The sampling of the primary 

Brillouin zone (BZ) for BNNT, monolayer SnS, SnS/BNNT heterostructures are done at 

1×6×1, 6×6×1, 6×6×1 k-point grid, respectively generated via the Monkhorst-Pack scheme. 

For a precise integration of the BZ during the non-self-consistent calculations, an even denser 

corresponding k-grid of 1×18×1, 12×12×1, 12×12×1, are considered for the three structures 

respectively. An energy convergence threshold of 10-4 Ry and a force convergence threshold 

of 10-3 Ry/Bohr are used to relax the lattice and atomic parameters. The convergence criteria 

for self-consistent calculation are set at 10-8 Ry. Semi-empirical Grimme’s DFT-D2 parameter 

accounts for the vdW force in the heterostructure.7 

Lattice mismatch along the direction of the nanotube axis is calculated by, 

LSnS−LBNNT

LSnS
× 100                                                                …(1) 

here, LSnS and LBNNT are the lattice parameters of SnS supercell and BNNT unit cell along y-

direction. 
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The interface binding energy (Eb) per unit cell of the heterostructure is calculated by the 

following formula: 

𝐸b = 𝐸SnS/BNNT − 𝐸SnS − 𝐸BNNT                                                …(2) 

the terms 𝐸SnS/BNNT, 𝐸SnS, 𝐸BNNT represent the total energies of the SnS/BNNT 

heterostructure, isolated SnS layer, and BNNT, respectively. 

The equation to calculate the charge density difference (CDD) is as follows:  

△ 𝜌 = 𝜌SnS/BNNT − 𝜌SnS − 𝜌BNNT                                              …(3) 

where, 𝜌SnS/BNNT, 𝜌SnS, 𝜌BNNT indicate the overall charge densities of the SnS/BNNT 

heterostructure, isolated SnS layer, and BNNT, respectively. 

Beyond DFT, the energy levels are corrected by introducing quasiparticle interactions through 

GW computations based on MBPT. The quasiparticle interaction is introduced by the following 

non-linear equation, 

𝐸𝑛𝑘
𝑄𝑃 = 𝜖𝑛𝑘 + 𝑍𝑛𝑘 < 𝛹𝑛𝑘|𝛴(𝐸𝑛𝑘

𝑄𝑃) − 𝑉𝑥𝑐|𝛹𝑛𝑘 >                                      …(4) 

where the term Znk represents renormalisation factor.  With the evaluation of the dynamical 

and static components in the self-energy (Σ), the plasmon-pole approximation (PPA) is used to 

determine the single pole function frequency subjected to the dielectric matrix.8,9  

The excitonic electron-hole effect is incorporated by solving the Bethe-Salpeter Equation 

(BSE) 9,10, 

 (𝐸𝑐𝑘 − 𝐸𝑣𝑘)𝐴𝑣𝑐𝑘
𝑆 + ∑ < 𝑣𝑐𝑘|𝐾𝑒ℎ

𝑘𝑣′𝑐′ |𝑣′𝑐′𝑘′ > 𝐴𝑣′𝑐′𝑘′
𝑆 = 𝛺𝑠𝐴𝑣𝑐𝑘

𝑆                      …(5) 

where, the screened interaction between excited electrons and holes are described by the kernel 

term 𝐾𝑒ℎ.9,10  The terms 𝐴𝑣𝑐𝑘
𝑆 , and 𝛺𝑠 represent the electron-hole amplitudes, and the exciton 

energy, respectively. 𝐸𝑐𝑘 and 𝐸𝑣𝑘 are the quasiparticle energies of the electron and hole states. 

The subscripts 𝑣, 𝑐, and 𝑘 represents the valence band (VB), conduction band (CB), and 𝑘 

vector, respectively. The GW+BSE computation is done using the YAMBO package.11,12 

The number of bands used to construct the RPA response function for the SnS/(5,0), SnS/(6,0), 

and SnS/(7,0) BNNT heterostructures were set to 180, 200, and 200, respectively. The 

dielectric matrix (ε-1
G,Gʹ) was expanded using four energy blocks (4 Ry cutoff) for all 
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heterostructures. Similarly, the number of unoccupied states included in the correlation self-

energy summation were 180, 200, and 200 for SnS/(5,0), SnS/(6,0), and SnS/(7,0) BNNT, 

respectively. The convergence tests for these parameters are presented in Figs. S1–S3. 

 

Figure S1: Convergence tests for the SnS/(5,0) BNNT heterostructure: (a) kinetic energy cutoff for wavefunctions 

and (b) k-point sampling at the DFT-GGA level. Convergence with respect to (c) the number of unoccupied states 

included in the correlation self-energy summation, and (d–f) the number of bands used to construct the RPA 

response function (BndsRnXp) and the number of dielectric matrix blocks considered for the valence band, 

conduction band, and band gap energy, respectively. 

 

Figure S2: Convergence tests for the SnS/(6,0) BNNT heterostructure: (a) kinetic energy cutoff for wavefunctions 

and (b) k-point sampling at the DFT-GGA level. Convergence with respect to (c) the number of unoccupied states 

included in the correlation self-energy summation, and (d–f) the number of bands used to construct the RPA 

response function (BndsRnXp) and the number of dielectric matrix blocks considered for the valence band, 

conduction band, and band gap energy, respectively. 
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Figure S3: Convergence tests for the SnS/(7,0) BNNT heterostructure: (a) kinetic energy cutoff for wavefunctions 

and (b) k-point sampling at the DFT-GGA level. Convergence with respect to (c) the number of unoccupied states 

included in the correlation self-energy summation, and (d–f) the number of bands used to construct the RPA 

response function (BndsRnXp) and the number of dielectric matrix blocks considered for the valence band, 

conduction band, and band gap energy, respectively. 

 

Figure S4: (a-c) Convergence test for lattice parameters vs. ground state energy; (d) AIMD simulation of the 

SnS/BNNT heterostructures at 300 K. 
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Figure S5: (a) Electronic band structure and (b) optical absorption spectra of SnS monolayer. 

 

Figure S6: Electronic band structure of (a) (5,0) (b) (6,0), and (c) (7,0) BNNTs; (d) optical absorption spectra of 

the BNNTs. 
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Figure S7: Electronic band structures of the SnS/(5,0) BNNT heterostructure under uniaxial strain applied along 

the nanotube axis. Panels (a-c) show the band structures under compressive strain of -1%, -3%, and -5%, 

respectively, while panels (d-f) correspond to tensile strain of +1%, +3%, and +5%. 

 

Table S1: Peak positions of the IDEs under tensile strain. 

Strain % IDEs energies (eV) No. of IDEs 

0 (unstrained) 2.68 1 

1% 2.50, 2.56, 2.64, 2.67, 2.70 5 

3% 2.48, 2.54, 2.67, 2.70, 2.74, 2.77, 2.80, 2.83 8 

5% 2.00, 2.32, 2.36, 2.40, 2.43, 2.48, 2.52, 2.54, 2.57, 2.63 10 
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Figure S8: Optical absorption spectra of the SnS/(5,0) BNNT heterostructure under uniaxial tensile strain of (a) 

1%, (b) 3%, and (c) 5%. The corresponding schematic illustrations in (d-f) depict the evolution of the C1 and C2 

conduction bands with increasing tensile strain, highlighting the increase in the number of available IDE transition 

states across the Γ-X valley. 
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