Supplementary material for

Phase transition of SiC support induces dispersed Na₂WO₄ catalyst for CH₃Cl-to-C₂H₃Cl conversion

Xutao Chen a†, Yue Wang a†, Kunkun Wei a†, Yunxin Bao, Jifeng Ouyang a, Chengyuan Liu^c, Yang Pan c, Shihui Zou b,*, and Jie Fan a,*

^aZhejiang Key Laboratory of Low-Carbon Synthesis of Value-Added Chemicals, Department of Chemistry, Zhejiang University, 310027 Hangzhou, China ^bCollege of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.

^cNational Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China.

†These authors contributed equally to this work.

*To whom correspondence should be addressed:

Fan Jie, E-mail: jfan@zju.edu.cn.

Zou Shihui, E-mail: zou@zjut.edu.cn

Equations:

Selective coupling of methyl chloride to vinyl chloride (MCTV)

The CH₃Cl conversion, products selectivity and yield were calculated using the following equations:

$$CH_{3}Cl\ Conv. = \frac{\left|CH_{3}Cl_{inlet}\right| - \left|CH_{3}Cl_{outlet}\right|}{\left|CH_{3}Cl_{inlet}\right|} \times 100\%\#(1)$$

$$C_2H_3Cl\,Sel. = \frac{2\times \left|C_2H_3Cl\right|}{\left|CH_3Cl_{inlet}\right| - \left|CH_3Cl_{outlet}\right|} \times 100\%\#(2)$$

$$C_2H_3Cl\ Yield = CH_3Cl\ Conv. * C_2H_3Cl\ Sel. * 100\%\#(3)$$

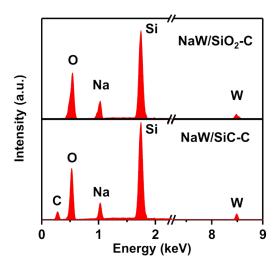


Figure S1. Elemental analysis of NaW/SiO $_2$ -C and NaW/SiC-C by EDS.

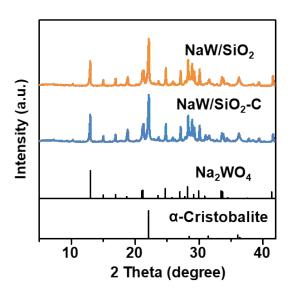


Figure S2. XRD pattern for catalyst before (NaW/SiO $_2$) and after calcination (NaW/SiO $_2$ -C) using α -cristobalite as support.

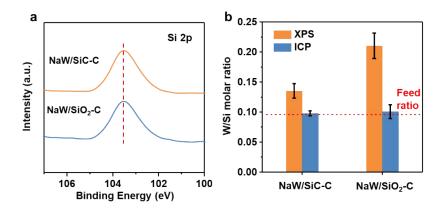


Figure S3. a) Si 2p of NaW/SiC-C and NaW/SiO₂-C catalysts. b) Quantitative determination of the surface W/Si atomic ratios in NaW/SiC-C and NaW/SiO₂-C catalysts by XPS and ICP-MS.

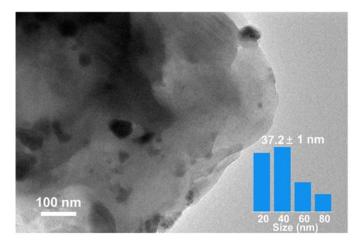


Figure S4. HRTEM image and particle size statistics of NaW/SiO₂-C catalyst.

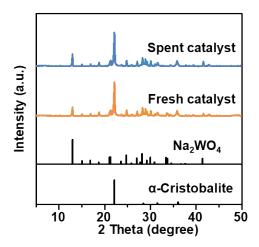


Figure S5. XRD pattern of fresh and spent NaW-SiC-C catalyst for long-term stability test.

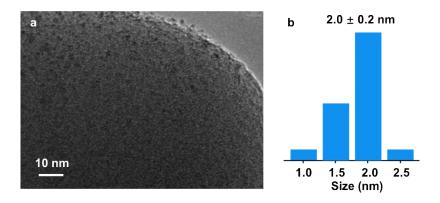


Figure S6. a) HRTEM image of spent NaW/SiC-C catalyst after long-term stability test.

b) Particle size distribution of Na_2WO_4 species on spent NaW/SiC-C catalyst.

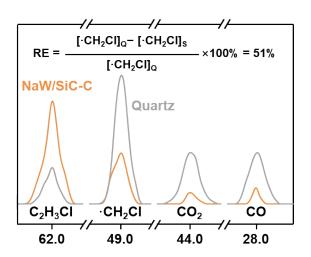


Figure S7. C_2H_3Cl , CH_2Cl , CO_2 and CO signals detected by in-situ SVUV-PIMS of NaW/SiC-C and quartz, respectively.

Table S1. Elemental composition of NaW/SiO₂-C and NaW/SiC-C by EDS.

Catalysts	Atomic ratio (%)					
	С	Na	О	Si	W	
NaW/SiO ₂ -C	0.00	5.88	64.63	26.59	2.90	
NaW/SiC-C	0.64	5.79	63.90	26.80	2.87	

Note: Based on the elemental ratios determined by EDS, the mass fraction of the remaining SiC in NaW/SiC-C is calculated to be ~ 1 wt%. This result indicates that only a small fraction of the β -SiC support retained its original phase after high-temperature treatment.

Table S2. The signal intensity of \cdot CH₂Cl, C₂H₃Cl, CO₂ and CO of the catalysts detected by in-situ SVUV-PIMS and the calculated reaction efficiency (RE) value of \cdot CH₂Cl.

Catalysts	Sig	nal intensit	DE (0()		
	·CH ₂ Cl	C ₂ H ₃ Cl	CO_2	СО	RE (%)
Quartz	0.614	0.091	0.116	0.059	-
NaW/SiO ₂ -C	0.356	0.291	0.096	0.064	40
NaW/SiC-C	0.306	0.380	0.033	0.015	51