MXene Quantum Lands: Emerging Trends and Breakthroughs

Mahdi Hasanzadeh Azar ^{a, b, *}, Fatemeh Etehadi ^{c, m}, Nima Mohamadbeigi ^d, Hessam Shahbazi ^{e,f}, Sara Salehi Siouki ^g, Ali Mirsepah ^h, Mohammad Reza Rahmani Taji Boyuk ⁱ, Ahmad Alem ^g, Amir Hatamie ^j, Abdolreza Simchi ^{*, k}, Shayan Angizi ^{*, l}

- ^a Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- ^b Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
- ^c Leibniz Institute for Composite Materials GmbH (IVW), Erwin-Schrödinger Str. 58, 67663 Kaiserslautern, Germany
- ^d Department of Materials Science and Engineering, Imam Khomeini International University (IKIU), Qazvin 3414916818, Iran
- ^e Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL, 60607 USA
- ^f Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, IL, 60607 USA
- ^g Department of Polymer Engineering and Science, Technical University of Leoben, Otto-Glöckel-Strasse 2, A-8700 Leoben, Austria
- ^h Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran.
- ⁱ School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran,
- ^j Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), No. 444, Prof. Yousef Sobouti Boulevard, Zanjan 45137-66731, Iran
- ^k Fraunhofer Institute for Manufacturing Technology and Advanced Materials, 28359 Bremen, Germany
- ¹ Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- ^m Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

*Corresponding authors' emails:

Mahdi Hasanzadeh Azar: mhasanza@uwaterloo.ca

Abdolreza Simchi: abdolreza.simchi@ifam.fraunhofer.de

Shayan Angizi: shayan.angizi@utoronto.ca

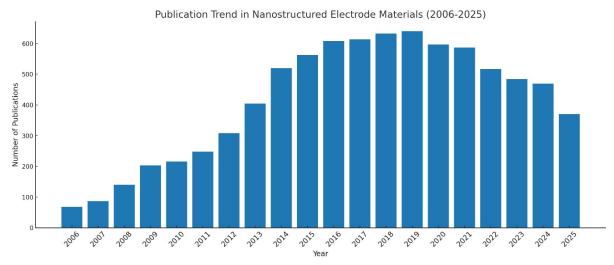


Fig. S1. Annual number of publications on nanostructured electrode materials from 2006 to 2025.

 Table S1. Advantages and Limitations of Different MQD Synthesis Methods.

Approach	Advantages	Limitations/Risks
Sonication-	• Simple, safe, and low-cost process under ambient conditions	 Low yield and lengthy exfoliation time
Assisted	 Requires minimal reagents or specialized equipment 	 Limited control over lateral size and surface termination
Exfoliation	• Compatible with various MXene precursors and solvents	 Structural degradation due to cavitation-induced defects
		 Poor reproducibility across large batches
Hydrothermal	• Enables precise control of morphology, crystallinity, and particle	• Sensitive to reaction parameters—minor deviations in
	size under optimized conditions	temperature, pressure, or pH can trigger undesired phase
	• Facilitates heteroatom doping and surface functionalization through	transitions
	controlled reaction environment	• High probability of surface oxidation and defect formation due to
	• Operates in a closed system that supports homogeneous nucleation	hydrolysis or residual oxygen species
	• Offers scalability and compatibility with diverse MXene precursors	• Energy- and reagent-intensive process with long reaction
		duration
		 Possible formation of nonstoichiometric or amorphous
		intermediates in suboptimal conditions
Solvothermal	• Enables size and morphology tuning with selective surface/edge	• Use of toxic organic solvents may pose environmental and safety
	functionalization	concerns
	Produces stable colloidal dispersions with reduced agglomeration	 Moderate yield and material loss during purification
	• Applicable for hybrid and doped MQD synthesis	• Requires strict control of solvent polarity and surfactant ratio
	Higher reaction uniformity than hydrothermal method	
Reflux	Mild reaction conditions and reduced oxidation tendency	• Long processing time (up to several hours)
Condensation	Continuous reaction pathway allows gradual QD nucleation	Complex setup and limited scalability
	• Suitable for obtaining uniform size in prolonged heating	• Restricted morphology control and narrow compositional range
Micro-Explosion	• Rapid, energy-efficient synthesis under ambient or mild conditions	Broad size distribution and limited control over morphology
/ Laser Ablation	• Free of hazardous chemicals and environmentally benign	• Multiple purification steps required to remove ablation debris
	• Facilitates direct synthesis of ultrafine MQDs from MXene films	• Low yield per batch and equipment-dependent reproducibility
Microwave-	Uniform volumetric heating enables rapid and homogeneous	• Risk of non-uniform particle growth and phase instability
Assisted	nucleation	• Localized overheating may induce structural collapse
	• Significantly shortened reaction time (minutes)	• Limited scalability and vessel design dependence
	• Reduced oxidation compared to conventional thermal routes	<i>J</i>
Molten Salt	High crystallinity and precise morphology control	High temperature and energy consumption
	• Solvent-free etching medium and allows for the use of non-fluorine	• Tedious purification to remove residual salts/by-products
	containing salts, making it a potentially environmentally benign process	Potential interfacial contamination from molten medium

• Promotes surface termination control through molten ionic media