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Gas-cell flow/pressure, mixing, and purge protocols.
Purging and cleaning protocol. This protocol is executed prior to each introduction
of a new gas or repetitive cycling test to establish a clean and reliable measurement
baseline. Operational Steps: Switch the gas path of the system to the diluent gas
(typically synthetic air or Nz). Set the total flow rate to a predetermined value.
Continue purging until the sensor’s electrical signal stabilizes at a constant value
(with a variation rate of less than 1% per minute), indicating that the test chamber and
sensor surface have reached a clean and stable state ready for testing.
Gas mixing and flow control protocol. The desired target gas concentration is
generated using the dynamic volumetric mixing method, with the specific calculation
formula as follows:

Crarget = (Fanalyte X Cparent) / Frotal
Where: Cuarget is the desired target gas concentration (unit: ppm). Fanalyie 1S the flow rate
of the analyte parent gas through its MFC (unit: sccm). Cparent 1S the concentration of
the analyte parent gas itself (unit: ppm). Fia is the total gas flow rate (unit: sccm),
calculated as Fiotal = Fanatyte + Fdiluent.
Flow and pressure control protocol. Flow Control: All experiments were conducted
under a constant total flow rate. The flow rates used in this study ranged between
100-500 sccm, with specific values determined by the experimental design. This
ensured consistent hydrodynamic conditions and gas residence times across different
test batches.
Pressure control: The entire test system operated with the chamber outlet venting
directly to the atmosphere. By precisely controlling the inlet flow rate, the system
naturally maintained a stable slight positive pressure inside the test chamber, slightly
above ambient atmospheric pressure. This design effectively prevents the diffusion of
external air into the chamber, thereby ensuring the purity and consistency of the test
atmosphere.
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Figure S1. (a-c) SEM images of WO3-8, WO3-12, and WO3-20, respectively, (d) XRD images of
WO3-8, WO3-12, and WO3-20, (¢) TEM and (f) HRTEM images of WO3-12, inset: The IFFT
image of WO3-12.
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Figure S2. SEM images of (a) Sn/W-0-10 and (b) Sn/W-0-14.
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Figure S3. (a-c) Size distribution of (a) Sn/W-0-14, (b) Sn/W-0-12, and (c¢) Sn/W-O-10.
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Figure S4. The IFFT images of (a) WO3 and (b) SnO:.
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Figure S5. (a-f) EDX mapping images of Sn/W-O-14 (a-c) and Sn/W-0-10 (d-f), (g) variation of
the contents of Sn, W, and O elements in Sn/W-0-14, Sn/W-0O-12 and Sn/W-0O-10.
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Figure S6. (a) Response and recovery curves of Sn/W-O-10, Sn/W-0O-12, Sn/W-0-14 sensors
under 5.0 ppm NO; at room temperature (RT), (b) bar graph of the maximum response value of
Sn/W-0O-10, Sn/W-0-12, and Sn/W-0-14 sensors from (a), (c) response and recovery curves of
WO3-12 under 3-10 ppm of NO>, (d) response and recovery curves of WOz and Sn/W-0-12 at
50% relative humidity (RH).
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Figure S7. (a) Response—temperature curves of the Sn/W-0O-12 sensor to 0.8 ppm NO; at different
operating temperatures, (b) initial resistances and sensor responses of the Sn/W-O-12 sensor

measured at different operating temperatures.
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Figure S8. Cycling stability curves of Sn/W-0-10, Sn/W-0O-12, Sn/W-0-14 sensors to 0.8 ppm
NO:o.

Table S1: Comparison of gas sensing performance of Sn/W-0-12 with other reported materials.

Long-term
. T stability (days) Response/Recovery LOD o
Materials (K) (Keep > 90% times (s) (ppm) Response (%)  Ref.
initial value)
CuO/rGO 333 10 1250/1800 / 4.8 (0.02 ppm) [1]
MoS/graphene 498 / 0.7/0.9 0.2 29.8 (1.0 ppm) 2]
MoS,/Sn0O: 298 14 530/680 / 0.6 (0.5 ppm) [3]
g-C3N4y/GaN 478 30 72/145 / 229 (10.0 ppm) [4]
NbS: 298 / 5000/7000 0.241  15.0 (5.0 ppm) [5]
SnS>@c-MOF 298 35 206/248 1.0 8.29 (10.0 ppm)  [6]
Au/MoS; 298 28 75/90 0.025 0.3 (2.5 ppm) [7]
In203-ZnO NWs 478 70 15/45 / 13.0 (4.0 ppm) [8]
NW-Au 498 / 170/260 / 9.0 (20.0 ppm) [9]
Zn0/In203 298 30 35/250 1.0 221 (5.0ppm) [10]
63/38 (0.8 ppm); 2.36 (0.8 ppm);  This
Sn/W-0-12 298 60 169/96 (5.0 ppm) 0.218 23.43 (0.8 ppm) work
a)  Vacuum evaporation Ag
PET

Ag

Figure S9. (a) Schematic illustration of the synthesis process for the flexible NO; gas sensor based
on Sn/W-0-12, (b) schematic diagram of the homemade dynamic testing platform, which includes
a stm32f103cbt6 minimal system board mounted on a breadboard, along with a buzzer and an
LED.
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Figure S10. Dynamic gas sensing characteristics of the flexible Sn/W-0-12 gas sensor for 2 ppm
NO:; gas at (a, b) flat and (c, d) bend conditions.
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