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1. Regular solution model 
To construct the phase diagram of nanoparticles (NPs), the regular solution model was employed 

to investigate their melting points. In an ideal solution, the assumption for the heat of mixing of 

its components is zero, and the entropy of mixing takes the same form as for ideal gases, where n 

is the total number of atoms, x1 and x2, corresponding to atoms of species A and B: 

Δ𝑆𝑆mix = −𝑛𝑛𝑛𝑛(𝑥𝑥1 ln 𝑥𝑥1 + 𝑥𝑥2 ln 𝑥𝑥2) (𝑆𝑆1)                                                

The regular solution model, originally introduced by Hildebrant and later generalised by 

Guggenheim, assumes negligible entropy change when a small quantity of a component is 

transferred from an ideal solution of similar composition, with the total volume remaining 

unchanged. This concept is explicitly stated by Guggenheim [S1]:  

“A regular solution is one involving no entropy change when a small amount of one 

of its components is transferred to it from an ideal solution of the same composition, 

the total volume remaining unchanged.” 

In this model, the entropy of mixing is treated as described in Eq. (S1), while acknowledging 

potential non-ideal behaviour. The focus of the regular solution model is on deviations of the 

enthalpy of mixing from its ideal values, which is a crucial aspect for solutions like metallic alloys. 

Several main assumptions are also made, including that (i) the interatomic interactions are 

pairwise; (ii) the coordination number z remains consistent across the solution and each of the 

pure components; (iii) interactions between atoms are limited to their z nearest neighbours; (iv) 

the interaction energy associated with a pair of atoms only depends on the type of atoms and not 

their concentration; (v) the occupancy of a site by an atom type is governed solely by the atom's 

concentration, without influence from neighbouring site occupancies [S2]. 

 

Utilising the regular solution model greatly simplifies the analysis of complex solutions, 

providing a dependable basis for computation. By bridging the gap between ideal and non-ideal 

solutions, the regular solution theory provides a framework for understanding and predicting the 

behaviour of systems that deviate from ideal solution assumptions [S1,S2]. However, this 

approach is not flawless due to its oversimplifying assumption and cannot perform well when the 

system is characterised by non-ideal mixing and complex atomic interactions. Besides, the model 

may predict a perfectly spherical structure where all atoms are precisely positioned in their ideal 

lattice sites, without any surface roughness or atomic-level deviations. Such perfect shapes are 

difficult to achieve by either experimental investigations or molecular dynamics (MD) 

simulations. Experimentally prepared NPs often exhibit surface defects, atomic-scale roughness, 

and may even be truncated or non-spherical. Similarly, in MD simulations, due to the complex 
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interactions and dynamical processes between atoms, the shapes of NPs can also deviate from 

their ideal geometric forms. Therefore, although the regular solution model provides a theoretical 

reference framework, one must be aware of the discrepancies between its predictions and reality. 

 

2. Construction of nanophase diagrams 
For the application of the regular solution model, the expressions for the solidus-liquidus line 

have been described by Guisbiers et al. [S3]. The method has been shown to work well for 

miscible systems [S4]:  

𝑅𝑅𝑅𝑅 ln � 𝑥𝑥solidus𝑥𝑥liquidus
� = Δ𝐻𝐻mA �1 − 𝑇𝑇

𝑇𝑇mA
� + 𝛺𝛺l�1 − 𝑥𝑥liquidus�

2 − 𝛺𝛺s(1 − 𝑥𝑥solidus)2

𝑅𝑅𝑅𝑅 ln � 1 − 𝑥𝑥solidus
1 − 𝑥𝑥liquidus

� = Δ𝐻𝐻mB �1 − 𝑇𝑇
𝑇𝑇mB
� + 𝛺𝛺l𝑥𝑥liquidus2 − 𝛺𝛺s𝑥𝑥solidus2

(S2) 

In Eq. (S2), 𝑅𝑅 = 𝑁𝑁0𝐾𝐾𝑏𝑏  is the ideal gas constant, 𝑥𝑥liquidus and 𝑥𝑥solidus are the compositions of 

liquid and solid phases at temperature 𝑇𝑇 , 𝛺𝛺l  and 𝛺𝛺s  are the size-dependent interaction 

parameters/energy in the liquid and solid phases, 𝑇𝑇mA and 𝑇𝑇mB are the melting temperature of pure 

components A and B, Δ𝐻𝐻mA  and Δ𝐻𝐻mB  are the molar mixing enthalpies of A and B. Therefore, with 

specific 𝑇𝑇, 𝑥𝑥liquidus and 𝑥𝑥solidus values, 𝛺𝛺l,∞ and 𝛺𝛺s,∞ can then be determined. (𝛺𝛺l,∞ and 𝛺𝛺s,∞ 

corresponding to the 𝛺𝛺l and 𝛺𝛺s at bulk situation.) This paper hereby firstly determined 𝑥𝑥liquidus 

and 𝑥𝑥solidus at 𝑇𝑇 ≅ (𝑇𝑇mA + 𝑇𝑇mB)/2 of their bulk phase diagram. 

 

To transform bulk phase diagrams to nanoscale phase diagrams, all size-dependent parameters 

need to be reevaluated. A linear function of 1/𝐷𝐷, where 𝐷𝐷 is the length edge of a polyhedral NP, 

is used: 

𝛷𝛷
𝛷𝛷∞

= 1 −
𝛼𝛼shape
𝐷𝐷

(S3) 

where 𝛷𝛷 and 𝛷𝛷∞ are the nanoscale and bulk property parameters, respectively (namely, 𝑇𝑇mA and 

𝑇𝑇mB, Δ𝛨𝛨mΑ  and Δ𝛨𝛨mΒ , 𝛺𝛺lAand 𝛺𝛺𝑠𝑠B). The shape-dependent parameter 𝛼𝛼shape, which quantifies the size 

effect on the material property, is defined as: 

𝛼𝛼shape =
𝐴𝐴𝐴𝐴(𝛾𝛾s − 𝛾𝛾l)
𝑉𝑉Δ𝐻𝐻m,∞

(S4) 

where 𝐴𝐴/𝑉𝑉 is the surface area-to-volume ratio, Δ𝐻𝐻m,∞ is the bulk melting enthalpy, and 𝛾𝛾s(l) is 

the surface energy in the solid (liquid) state [S4]. The ratio between the number of surface atoms 

and the total number of atoms can be generalised as:   
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𝑁𝑁surf
𝑁𝑁tot

= 𝑋𝑋hkl𝑎𝑎
𝐴𝐴
𝑉𝑉

(S5) 

where 𝑋𝑋hkl is a numerical constant which only depends on the crystal orientation, and 𝑎𝑎 is 

the bulk lattice parameter [S5]. Combining Eqs. (S3), (S4), and (S5) we get Eq. (S6): 

𝛷𝛷
𝛷𝛷∞

= 1 + �
𝑁𝑁surf
𝑁𝑁tot

1
𝑎𝑎𝑎𝑎hkl

� �
𝛾𝛾l − 𝛾𝛾s
Δ𝐻𝐻m,∞

� ⟺
𝛷𝛷
𝛷𝛷∞

= 1 + �
𝐴𝐴
𝑉𝑉
��

𝛾𝛾l − 𝛾𝛾s
Δ𝐻𝐻m,∞

� (S6) 

For every material and for different sizes [S4]: 

𝛾𝛾s =
𝑁𝑁shape1𝐴𝐴shape1𝛾𝛾shape1 + 𝑁𝑁shape2𝐴𝐴shape2𝛾𝛾shape2 + ⋯

𝐴𝐴
(S7) 

Using the surface area and volume equations specific to the shape of the NPs, the values of A and 

V can be geometrically derived. Consequently, all the parameters in Eq. (S5) are known, enabling 

the calculation of 𝛷𝛷. Substituting the calculated parameters, the size-dependent interaction 𝛺𝛺s(l) 

can be determined, which enables derivation of the phase diagram for all nm-scale particles by 

multiplying the nanoscale with the bulk property parameter. 

 

It should be noted that when the particle size shrinks below ~3 nm, the lattice constant and surface 

energy may display a weak size dependence, which may limit the accuracy of the calculation 

method, thus making the produced nanophase diagram less reliable. Furthermore, below 3 nm, 

the thermodynamic stability of the clusters may also decrease, making it difficult to reflect phase 

transition behaviour. Therefore, to ensure that the investigation is conducted within a relatively 

reliable size range, avoid errors introduced at smaller scales, and guarantee thermodynamic 

stability, we started our calculations from 3 nm, to obtain more reliable results. 

 
Table S1: Material property values from the literature used for the calculations. We opted for a limited 
number of sources for consistency.  

   
Ni Pt Au Pd Material properties  

Crystal structure  fcc fcc fcc fcc 
Tmelt,∞ (K)[S7]  1728.3 2041.5 1337.33 1828 

density (g/cm3)[S7]  8.9 21.4 19.3 12 
atomic weight (g/mol)[S7]  195.084 58.693 196.967 106.42 

γs,111 (J/m2)[S8]  2.011 2.299 1.283 1.92 
γs,100 (J/m2)[S8]  2.426 2.734 1.627 2.326 
γs,110 (J/m-2)[S8]  2.368 2.819 1.7 2.225 

γl (J/m2)[S7]  1.725 1.866 1.128 1.5 
ΔHmelt,∞ (J/mol-1)[S7]  17480 22175 12552 16736 
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Table S2: Calculated Φ values for truncated-octahedral NPs 3-10 nm in diameter 
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3. Results and Discussion 

 
Figure S1: Melting points as a function of NP diameter for all monometallic systems studied here, 
indicating the different rates of melting point depression among different elements.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Movie S1: MD study of coalescence between monometallic Pd and Pt NPs at 1200 K. The temperature is 
below the NPs’ melting points. Amorphous, partially segregated NPs emerged, with a tendency of Pd atoms 
to occupy surface sites. 
 
Movie S2: MD study of coalescence between monometallic Pd and Pt NPs at 1600 K. The temperature is 
above the NPs’ melting points. Liquid, mixed NPs emerged, which, upon cooling, may result in cored, 
partially demixed NPs.   
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