Broad-Spectrum Light-Responsive N-Doped Graphene Quantum Dots for Efficient Photocatalytic Generation of Hydroxyl Radicals and Antibacterial Applications

Van-Phuoc Thai *1, Dam Ngoc Tran1, Khanh Dung Pham2, Thanh An Nguyen-Thi2, Bao Tram Ngo-Le2, Kazumasa Takahashi3, Toru Sasaki3,4, and Takashi Kikuchi3,5,6

Faculty of Mechanical Engineering, HCMC University of Technology and Education, Ho Chi Minh City 71307, Vietnam

²Faculty of Chemical and Food Technology, HCMC University of Technology and Education, Ho Chi Minh City 71307, Vietnam

³Department of Electrical, Electronics and Information Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan

⁴Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka 940-2188, Japan

⁵Department of Nuclear Technology, Nagaoka University of Technology, Nagaoka 940-2188, Japan

⁶Extreme Energy-Density Research Institute, Nagaoka University of Technology, Nagaoka 940-2188, Japan

^{*}phuoctv@hcmute.edu.vn

Calculation of OH yield

To determine OH radical production, we first established a linear relationship between the concentration of 2hTA and its PL intensity under 310 nm excitation, as shown in Figure S1a. The result was:

$$[2hTA] = 1.5 \times 10^{-5} \times Intentisity - 0.52$$

Using this calibration, the OH radical concentration in Samples (1)-(4) was calculated from their corresponding PL intensities. The net OH radical concentration from the H_2O_2 -to-OH conversion by N-GQDs was then determined by subtracting the Samples (2) and (3) from the total OH concentration in Sample (1), as expressed by:

$$[OH]_{H_2O_2-to-OH\ conversion\ by\ N-GQDs} = [OH]_{Sample\ (1)} - [OH]_{Sample\ (2)} - [OH]_{Sample\ (3)}$$

Figure S 1 (a) PL spectra of 2-hydroxyterephthalic acid (2hTA) solutions at different concentrations, with inset showing the linear regression between 2hTA concentration and PL intensity. (b-d) Time evolution of PL spectra (excitation at 310 nm) of solutions under UVA, green, and red light irradiation, respectively.

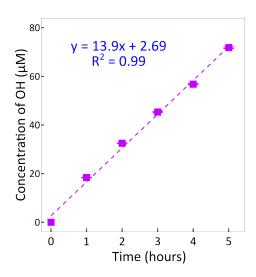


Figure S 2 Time-evolution of OH radical concentration generated in solution of NaTA + H_2O_2 under UVA illumination. The result was calculated from the PL spectra in Figure S1b. The concentration of OH radicals increases linearly with time, following the equation Y = 13.9X + 2.69 (R² = 0.99), indicating a steady generation rate of \sim 13.9 μ M.h⁻¹.

Table S 1 S	Summary of	the interpretation	of N 1s and C	ls spectra	of N-GQDs ¹⁻⁴ .
-------------	------------	--------------------	---------------	------------	----------------------------

Peaks	Core level binding energy	FWHM	G-L
Peaks	(eV)	(eV)	(0-1)
C			
Graphitic carbon	284.3 - 284.8	1.2 - 2.0	0 - 0.3
C_{sp3} -N in pyridinic, pyrrolic forms	284.8 - 285.5	1.2 - 2.0	0 - 0.3
$C-O$, $C_{sp3}-N$, $C-OH$	285.6 - 286.5	1.4 - 2.4	0 - 0.2
Carbonyl (C=O)	286.5 - 288.0	1.4 - 2.4	0 - 0.2
Carboxyl (COOH)	288.0 - 289.2	1.4 - 2.4	0 - 0.2
Shake-up	291.0 - 294.0	1.4 - 2.4	0 - 0.2
N_{1s}	207.0	1 4 0 0	0 0 0
Pyridinic - N	397.8 - 398.8	1.4 - 2.0	0 - 0.2
Pyridone/ C_3N_4 /amine	399.6 - 399.9	1.4 - 2.0	0 - 0.2
Pyrrolic-N	399.9 - 400.7	1.4 - 2.0	0 - 0.2
Graphitic-N	401.2 - 401.8	1.4 - 2.0	0 - 0.2
Nitrogen oxide	402.2 - 404.2	1.4 - 2.0	0 - 0.2

Table S 2 The volume ratio of Staphylococcus aureus, N-GQDs, and H_2O_2 in one mL sample. The H_2O_2 stock solution was diluted and added to achieve final concentrations ranging from 10^{-1} to 0.1 M as designed.

Samples	SA density, N-GQDs, and H ₂ O ₂
Control	225 μL SA 10^6 CFU.mL ⁻¹ + 775 μL H ₂ O
N-GQDs control	225 μ L SA 10^6 CFU.mL ⁻¹ + 775 μ L N-GQDs
H ₂ O ₂ alone	225 μ L SA 10^6 CFU.mL ⁻¹ + 770 μ L H ₂ O + 25 μ L H ₂ O ₂
$N-GQDs + H_2O_2$	225 μ L SA 10 ⁶ CFU.mL ⁻¹ + 770 μ L N-GQDs + 25 μ L H ₂ O ₂

References

- [1] Ayiania, M.; Smith, M.; Hensley, A. J.; Scudiero, L.; McEwen, J.-S.; Garcia-Perez, M. Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles. *Carbon* **2020**, *162*, 528–544.
- [2] Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, M. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. *Ceramics International* **2019**, *45*, 14439–14448.
- [3] Xiang, Q.; Yu, J.; Jaroniec, M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. *The Journal of Physical Chemistry C* **2011**, *115*, 7355–7363.
- [4] Thai, V.-P.; Tran, D. N.; Kosugi, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T. One-Step Synthesis of N-Doped Graphene Quantum Dots via Plasma Contacting Liquid for Multiple Heavy Metal Ion Detection. *ACS Applied Nano Materials* **2024**, *7*, 12664–12672.